This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent condition for being a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ellimcabssub0.f | |- F = ( x e. A |-> B ) |
|
| ellimcabssub0.g | |- G = ( x e. A |-> ( B - C ) ) |
||
| ellimcabssub0.a | |- ( ph -> A C_ CC ) |
||
| ellimcabssub0.b | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
| ellimcabssub0.p | |- ( ph -> D e. CC ) |
||
| ellimcabssub0.c | |- ( ph -> C e. CC ) |
||
| Assertion | ellimcabssub0 | |- ( ph -> ( C e. ( F limCC D ) <-> 0 e. ( G limCC D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimcabssub0.f | |- F = ( x e. A |-> B ) |
|
| 2 | ellimcabssub0.g | |- G = ( x e. A |-> ( B - C ) ) |
|
| 3 | ellimcabssub0.a | |- ( ph -> A C_ CC ) |
|
| 4 | ellimcabssub0.b | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
| 5 | ellimcabssub0.p | |- ( ph -> D e. CC ) |
|
| 6 | ellimcabssub0.c | |- ( ph -> C e. CC ) |
|
| 7 | 0cnd | |- ( ph -> 0 e. CC ) |
|
| 8 | 6 7 | 2thd | |- ( ph -> ( C e. CC <-> 0 e. CC ) ) |
| 9 | 6 | adantr | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 10 | 4 9 | subcld | |- ( ( ph /\ x e. A ) -> ( B - C ) e. CC ) |
| 11 | 10 2 | fmptd | |- ( ph -> G : A --> CC ) |
| 12 | 11 | ffvelcdmda | |- ( ( ph /\ z e. A ) -> ( G ` z ) e. CC ) |
| 13 | 12 | subid1d | |- ( ( ph /\ z e. A ) -> ( ( G ` z ) - 0 ) = ( G ` z ) ) |
| 14 | simpr | |- ( ( ph /\ z e. A ) -> z e. A ) |
|
| 15 | csbov1g | |- ( z e. _V -> [_ z / x ]_ ( B - C ) = ( [_ z / x ]_ B - C ) ) |
|
| 16 | 15 | elv | |- [_ z / x ]_ ( B - C ) = ( [_ z / x ]_ B - C ) |
| 17 | sban | |- ( [ z / x ] ( ph /\ x e. A ) <-> ( [ z / x ] ph /\ [ z / x ] x e. A ) ) |
|
| 18 | nfv | |- F/ x ph |
|
| 19 | 18 | sbf | |- ( [ z / x ] ph <-> ph ) |
| 20 | clelsb1 | |- ( [ z / x ] x e. A <-> z e. A ) |
|
| 21 | 19 20 | anbi12i | |- ( ( [ z / x ] ph /\ [ z / x ] x e. A ) <-> ( ph /\ z e. A ) ) |
| 22 | 17 21 | bitri | |- ( [ z / x ] ( ph /\ x e. A ) <-> ( ph /\ z e. A ) ) |
| 23 | 4 | nfth | |- F/ x ( ( ph /\ x e. A ) -> B e. CC ) |
| 24 | 23 | sbf | |- ( [ z / x ] ( ( ph /\ x e. A ) -> B e. CC ) <-> ( ( ph /\ x e. A ) -> B e. CC ) ) |
| 25 | sbim | |- ( [ z / x ] ( ( ph /\ x e. A ) -> B e. CC ) <-> ( [ z / x ] ( ph /\ x e. A ) -> [ z / x ] B e. CC ) ) |
|
| 26 | 24 25 | sylbb1 | |- ( ( ( ph /\ x e. A ) -> B e. CC ) -> ( [ z / x ] ( ph /\ x e. A ) -> [ z / x ] B e. CC ) ) |
| 27 | 22 26 | biimtrrid | |- ( ( ( ph /\ x e. A ) -> B e. CC ) -> ( ( ph /\ z e. A ) -> [ z / x ] B e. CC ) ) |
| 28 | 4 27 | ax-mp | |- ( ( ph /\ z e. A ) -> [ z / x ] B e. CC ) |
| 29 | sbsbc | |- ( [ z / x ] B e. CC <-> [. z / x ]. B e. CC ) |
|
| 30 | sbcel1g | |- ( z e. _V -> ( [. z / x ]. B e. CC <-> [_ z / x ]_ B e. CC ) ) |
|
| 31 | 30 | elv | |- ( [. z / x ]. B e. CC <-> [_ z / x ]_ B e. CC ) |
| 32 | 29 31 | bitri | |- ( [ z / x ] B e. CC <-> [_ z / x ]_ B e. CC ) |
| 33 | 28 32 | sylib | |- ( ( ph /\ z e. A ) -> [_ z / x ]_ B e. CC ) |
| 34 | 6 | adantr | |- ( ( ph /\ z e. A ) -> C e. CC ) |
| 35 | 33 34 | subcld | |- ( ( ph /\ z e. A ) -> ( [_ z / x ]_ B - C ) e. CC ) |
| 36 | 16 35 | eqeltrid | |- ( ( ph /\ z e. A ) -> [_ z / x ]_ ( B - C ) e. CC ) |
| 37 | 2 | fvmpts | |- ( ( z e. A /\ [_ z / x ]_ ( B - C ) e. CC ) -> ( G ` z ) = [_ z / x ]_ ( B - C ) ) |
| 38 | 14 36 37 | syl2anc | |- ( ( ph /\ z e. A ) -> ( G ` z ) = [_ z / x ]_ ( B - C ) ) |
| 39 | 1 | fvmpts | |- ( ( z e. A /\ [_ z / x ]_ B e. CC ) -> ( F ` z ) = [_ z / x ]_ B ) |
| 40 | 14 33 39 | syl2anc | |- ( ( ph /\ z e. A ) -> ( F ` z ) = [_ z / x ]_ B ) |
| 41 | 40 | oveq1d | |- ( ( ph /\ z e. A ) -> ( ( F ` z ) - C ) = ( [_ z / x ]_ B - C ) ) |
| 42 | 16 41 | eqtr4id | |- ( ( ph /\ z e. A ) -> [_ z / x ]_ ( B - C ) = ( ( F ` z ) - C ) ) |
| 43 | 13 38 42 | 3eqtrrd | |- ( ( ph /\ z e. A ) -> ( ( F ` z ) - C ) = ( ( G ` z ) - 0 ) ) |
| 44 | 43 | fveq2d | |- ( ( ph /\ z e. A ) -> ( abs ` ( ( F ` z ) - C ) ) = ( abs ` ( ( G ` z ) - 0 ) ) ) |
| 45 | 44 | breq1d | |- ( ( ph /\ z e. A ) -> ( ( abs ` ( ( F ` z ) - C ) ) < y <-> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) |
| 46 | 45 | imbi2d | |- ( ( ph /\ z e. A ) -> ( ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 47 | 46 | ralbidva | |- ( ph -> ( A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 48 | 47 | rexbidv | |- ( ph -> ( E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 49 | 48 | ralbidv | |- ( ph -> ( A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) <-> A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) |
| 50 | 8 49 | anbi12d | |- ( ph -> ( ( C e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) ) <-> ( 0 e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) ) |
| 51 | 4 1 | fmptd | |- ( ph -> F : A --> CC ) |
| 52 | 51 3 5 | ellimc3 | |- ( ph -> ( C e. ( F limCC D ) <-> ( C e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( F ` z ) - C ) ) < y ) ) ) ) |
| 53 | 11 3 5 | ellimc3 | |- ( ph -> ( 0 e. ( G limCC D ) <-> ( 0 e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. A ( ( z =/= D /\ ( abs ` ( z - D ) ) < w ) -> ( abs ` ( ( G ` z ) - 0 ) ) < y ) ) ) ) |
| 54 | 50 52 53 | 3bitr4d | |- ( ph -> ( C e. ( F limCC D ) <-> 0 e. ( G limCC D ) ) ) |