This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function has empty domain, every complex number is a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcdm0.f | ⊢ ( 𝜑 → 𝐹 : ∅ ⟶ ℂ ) | |
| limcdm0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
| Assertion | limcdm0 | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcdm0.f | ⊢ ( 𝜑 → 𝐹 : ∅ ⟶ ℂ ) | |
| 2 | limcdm0.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
| 3 | limccl | ⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ | |
| 4 | 3 | sseli | ⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
| 5 | 4 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 7 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 8 | ral0 | ⊢ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) | |
| 9 | brimralrspcev | ⊢ ( ( 1 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 1 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) → ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) | |
| 10 | 7 8 9 | mp2an | ⊢ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
| 11 | 10 | rgenw | ⊢ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) |
| 13 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐹 : ∅ ⟶ ℂ ) |
| 14 | 0ss | ⊢ ∅ ⊆ ℂ | |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∅ ⊆ ℂ ) |
| 16 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ℂ ) |
| 17 | 13 15 16 | ellimc3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑤 ∈ ℝ+ ∀ 𝑧 ∈ ∅ ( ( 𝑧 ≠ 𝐵 ∧ ( abs ‘ ( 𝑧 − 𝐵 ) ) < 𝑤 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − 𝑥 ) ) < 𝑦 ) ) ) ) |
| 18 | 6 12 17 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) |
| 19 | 5 18 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ℂ ) ) |
| 20 | 19 | eqrdv | ⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |