This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move proper substitution in and out of a membership relation. Note that the scope of [. A / x ]. is the wff B e. C , whereas the scope of [_ A / x ]_ is the class B . (Contributed by NM, 10-Nov-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbcel1g | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcel12 | ⊢ ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) | |
| 2 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐶 ) | |
| 3 | 2 | eleq2d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝐶 ) ) |
| 4 | 1 3 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 ∈ 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∈ 𝐶 ) ) |