This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a 1-based finite set of sequential integers. (Contributed by AV, 30-Oct-2018) (Proof shortened by AV, 23-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfz1b | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz2 | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) ↔ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) | |
| 2 | simpl2 | ⊢ ( ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → 𝑀 ∈ ℤ ) | |
| 3 | 1red | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 1 ∈ ℝ ) | |
| 4 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℝ ) |
| 6 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℝ ) |
| 8 | letr | ⊢ ( ( 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( 1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) → 1 ≤ 𝑀 ) ) | |
| 9 | 3 5 7 8 | syl3anc | ⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) → 1 ≤ 𝑀 ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → 1 ≤ 𝑀 ) |
| 11 | elnnz1 | ⊢ ( 𝑀 ∈ ℕ ↔ ( 𝑀 ∈ ℤ ∧ 1 ≤ 𝑀 ) ) | |
| 12 | 2 10 11 | sylanbrc | ⊢ ( ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 1 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) → 𝑀 ∈ ℕ ) |
| 13 | 1 12 | sylbi | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑀 ∈ ℕ ) |
| 14 | elfzel2 | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 15 | fznn | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) ) | |
| 16 | 15 | biimpd | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( 1 ... 𝑀 ) → ( 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 17 | 14 16 | mpcom | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → ( 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) |
| 18 | 3anan12 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ↔ ( 𝑀 ∈ ℕ ∧ ( 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) ) | |
| 19 | 13 17 18 | sylanbrc | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) |
| 20 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 21 | 20 15 | syl | ⊢ ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) ) |
| 22 | 21 | biimprd | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → 𝑁 ∈ ( 1 ... 𝑀 ) ) ) |
| 23 | 22 | expd | ⊢ ( 𝑀 ∈ ℕ → ( 𝑁 ∈ ℕ → ( 𝑁 ≤ 𝑀 → 𝑁 ∈ ( 1 ... 𝑀 ) ) ) ) |
| 24 | 23 | 3imp21 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) → 𝑁 ∈ ( 1 ... 𝑀 ) ) |
| 25 | 19 24 | impbii | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ≤ 𝑀 ) ) |