This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition for elements of a generated filter. (Contributed by Jeff Hankins, 3-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfg | |- ( F e. ( fBas ` X ) -> ( A e. ( X filGen F ) <-> ( A C_ X /\ E. x e. F x C_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fgval | |- ( F e. ( fBas ` X ) -> ( X filGen F ) = { y e. ~P X | ( F i^i ~P y ) =/= (/) } ) |
|
| 2 | 1 | eleq2d | |- ( F e. ( fBas ` X ) -> ( A e. ( X filGen F ) <-> A e. { y e. ~P X | ( F i^i ~P y ) =/= (/) } ) ) |
| 3 | pweq | |- ( y = A -> ~P y = ~P A ) |
|
| 4 | 3 | ineq2d | |- ( y = A -> ( F i^i ~P y ) = ( F i^i ~P A ) ) |
| 5 | 4 | neeq1d | |- ( y = A -> ( ( F i^i ~P y ) =/= (/) <-> ( F i^i ~P A ) =/= (/) ) ) |
| 6 | 5 | elrab | |- ( A e. { y e. ~P X | ( F i^i ~P y ) =/= (/) } <-> ( A e. ~P X /\ ( F i^i ~P A ) =/= (/) ) ) |
| 7 | elfvdm | |- ( F e. ( fBas ` X ) -> X e. dom fBas ) |
|
| 8 | elpw2g | |- ( X e. dom fBas -> ( A e. ~P X <-> A C_ X ) ) |
|
| 9 | 7 8 | syl | |- ( F e. ( fBas ` X ) -> ( A e. ~P X <-> A C_ X ) ) |
| 10 | elin | |- ( x e. ( F i^i ~P A ) <-> ( x e. F /\ x e. ~P A ) ) |
|
| 11 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 12 | 11 | anbi2i | |- ( ( x e. F /\ x e. ~P A ) <-> ( x e. F /\ x C_ A ) ) |
| 13 | 10 12 | bitri | |- ( x e. ( F i^i ~P A ) <-> ( x e. F /\ x C_ A ) ) |
| 14 | 13 | exbii | |- ( E. x x e. ( F i^i ~P A ) <-> E. x ( x e. F /\ x C_ A ) ) |
| 15 | n0 | |- ( ( F i^i ~P A ) =/= (/) <-> E. x x e. ( F i^i ~P A ) ) |
|
| 16 | df-rex | |- ( E. x e. F x C_ A <-> E. x ( x e. F /\ x C_ A ) ) |
|
| 17 | 14 15 16 | 3bitr4i | |- ( ( F i^i ~P A ) =/= (/) <-> E. x e. F x C_ A ) |
| 18 | 17 | a1i | |- ( F e. ( fBas ` X ) -> ( ( F i^i ~P A ) =/= (/) <-> E. x e. F x C_ A ) ) |
| 19 | 9 18 | anbi12d | |- ( F e. ( fBas ` X ) -> ( ( A e. ~P X /\ ( F i^i ~P A ) =/= (/) ) <-> ( A C_ X /\ E. x e. F x C_ A ) ) ) |
| 20 | 6 19 | bitrid | |- ( F e. ( fBas ` X ) -> ( A e. { y e. ~P X | ( F i^i ~P y ) =/= (/) } <-> ( A C_ X /\ E. x e. F x C_ A ) ) ) |
| 21 | 2 20 | bitrd | |- ( F e. ( fBas ` X ) -> ( A e. ( X filGen F ) <-> ( A C_ X /\ E. x e. F x C_ A ) ) ) |