This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleigvec | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvecval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigvec ‘ 𝑇 ) = { 𝑦 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) } ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ 𝐴 ∈ { 𝑦 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) } ) ) |
| 3 | eldif | ⊢ ( 𝐴 ∈ ( ℋ ∖ 0ℋ ) ↔ ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ ) ) | |
| 4 | elch0 | ⊢ ( 𝐴 ∈ 0ℋ ↔ 𝐴 = 0ℎ ) | |
| 5 | 4 | necon3bbii | ⊢ ( ¬ 𝐴 ∈ 0ℋ ↔ 𝐴 ≠ 0ℎ ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝐴 ∈ ℋ ∧ ¬ 𝐴 ∈ 0ℋ ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝐴 ∈ ( ℋ ∖ 0ℋ ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝐴 ∈ ( ℋ ∖ 0ℋ ) ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ↔ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑇 ‘ 𝑦 ) = ( 𝑇 ‘ 𝐴 ) ) | |
| 10 | oveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 ·ℎ 𝑦 ) = ( 𝑥 ·ℎ 𝐴 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑇 ‘ 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ↔ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 12 | 11 | rexbidv | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) ↔ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 13 | 12 | elrab | ⊢ ( 𝐴 ∈ { 𝑦 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) } ↔ ( 𝐴 ∈ ( ℋ ∖ 0ℋ ) ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 14 | df-3an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ↔ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) | |
| 15 | 8 13 14 | 3bitr4i | ⊢ ( 𝐴 ∈ { 𝑦 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝑦 ) = ( 𝑥 ·ℎ 𝑦 ) } ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 16 | 2 15 | bitrdi | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) ) |