This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 18-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleigvec2 | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleigvec | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) ) | |
| 2 | elspansn | ⊢ ( 𝐴 ∈ ℋ → ( ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 4 | 3 | pm5.32i | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ↔ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 5 | df-3an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ↔ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) | |
| 6 | df-3an | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ↔ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ∃ 𝑥 ∈ ℂ ( 𝑇 ‘ 𝐴 ) = ( 𝑥 ·ℎ 𝐴 ) ) ) |
| 8 | 1 7 | bitr4di | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( 𝐴 ∈ ( eigvec ‘ 𝑇 ) ↔ ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) ) ) |