This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eleigvec | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigvecval | |- ( T : ~H --> ~H -> ( eigvec ` T ) = { y e. ( ~H \ 0H ) | E. x e. CC ( T ` y ) = ( x .h y ) } ) |
|
| 2 | 1 | eleq2d | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> A e. { y e. ( ~H \ 0H ) | E. x e. CC ( T ` y ) = ( x .h y ) } ) ) |
| 3 | eldif | |- ( A e. ( ~H \ 0H ) <-> ( A e. ~H /\ -. A e. 0H ) ) |
|
| 4 | elch0 | |- ( A e. 0H <-> A = 0h ) |
|
| 5 | 4 | necon3bbii | |- ( -. A e. 0H <-> A =/= 0h ) |
| 6 | 5 | anbi2i | |- ( ( A e. ~H /\ -. A e. 0H ) <-> ( A e. ~H /\ A =/= 0h ) ) |
| 7 | 3 6 | bitri | |- ( A e. ( ~H \ 0H ) <-> ( A e. ~H /\ A =/= 0h ) ) |
| 8 | 7 | anbi1i | |- ( ( A e. ( ~H \ 0H ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 9 | fveq2 | |- ( y = A -> ( T ` y ) = ( T ` A ) ) |
|
| 10 | oveq2 | |- ( y = A -> ( x .h y ) = ( x .h A ) ) |
|
| 11 | 9 10 | eqeq12d | |- ( y = A -> ( ( T ` y ) = ( x .h y ) <-> ( T ` A ) = ( x .h A ) ) ) |
| 12 | 11 | rexbidv | |- ( y = A -> ( E. x e. CC ( T ` y ) = ( x .h y ) <-> E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 13 | 12 | elrab | |- ( A e. { y e. ( ~H \ 0H ) | E. x e. CC ( T ` y ) = ( x .h y ) } <-> ( A e. ( ~H \ 0H ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 14 | df-3an | |- ( ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) <-> ( ( A e. ~H /\ A =/= 0h ) /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
|
| 15 | 8 13 14 | 3bitr4i | |- ( A e. { y e. ( ~H \ 0H ) | E. x e. CC ( T ` y ) = ( x .h y ) } <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) |
| 16 | 2 15 | bitrdi | |- ( T : ~H --> ~H -> ( A e. ( eigvec ` T ) <-> ( A e. ~H /\ A =/= 0h /\ E. x e. CC ( T ` A ) = ( x .h A ) ) ) ) |