This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of eigenvectors of a Hilbert space operator. (Contributed by NM, 11-Mar-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eigvecval | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigvec ‘ 𝑇 ) = { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hilex | ⊢ ℋ ∈ V | |
| 2 | difexg | ⊢ ( ℋ ∈ V → ( ℋ ∖ 0ℋ ) ∈ V ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ℋ ∖ 0ℋ ) ∈ V |
| 4 | 3 | rabex | ⊢ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ∈ V |
| 5 | fveq1 | ⊢ ( 𝑡 = 𝑇 → ( 𝑡 ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ↔ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝑡 = 𝑇 → ( ∃ 𝑦 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ↔ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) ) ) |
| 8 | 7 | rabbidv | ⊢ ( 𝑡 = 𝑇 → { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } = { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) |
| 9 | df-eigvec | ⊢ eigvec = ( 𝑡 ∈ ( ℋ ↑m ℋ ) ↦ { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑡 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) | |
| 10 | 4 1 1 8 9 | fvmptmap | ⊢ ( 𝑇 : ℋ ⟶ ℋ → ( eigvec ‘ 𝑇 ) = { 𝑥 ∈ ( ℋ ∖ 0ℋ ) ∣ ∃ 𝑦 ∈ ℂ ( 𝑇 ‘ 𝑥 ) = ( 𝑦 ·ℎ 𝑥 ) } ) |