This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition (first conjunct pair, that holds when T is a positive operator) for an eigenvalue B (second conjunct pair) to be nonnegative. Remark (ii) in Hughes p. 137. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eigpos.1 | ⊢ 𝐴 ∈ ℋ | |
| eigpos.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | eigposi | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigpos.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | eigpos.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | oveq2 | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ) | |
| 4 | 3 | eleq1d | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ) ) |
| 5 | 2 1 | hvmulcli | ⊢ ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ |
| 6 | hire | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐴 ) ∈ ℋ ) → ( ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) | |
| 7 | 1 5 6 | mp2an | ⊢ ( ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) |
| 8 | oveq1 | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) | |
| 9 | 3 8 | eqeq12d | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) ) |
| 10 | 7 9 | bitr4id | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
| 11 | 4 10 | bitrd | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ) ) |
| 13 | 1 2 | eigrei | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |
| 14 | 12 13 | bitrd | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) |
| 15 | 14 | biimpac | ⊢ ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 𝐵 ∈ ℝ ) |
| 16 | 15 | adantlr | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 𝐵 ∈ ℝ ) |
| 17 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 18 | 1 17 | mp1i | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) |
| 19 | ax-his4 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) | |
| 20 | 1 19 | mpan | ⊢ ( 𝐴 ≠ 0ℎ → 0 < ( 𝐴 ·ih 𝐴 ) ) |
| 21 | 20 | ad2antll | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 < ( 𝐴 ·ih 𝐴 ) ) |
| 22 | 18 21 | elrpd | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih 𝐴 ) ∈ ℝ+ ) |
| 23 | simplr | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) | |
| 24 | 3 | ad2antrl | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ) |
| 25 | his5 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) | |
| 26 | 2 1 1 25 | mp3an | ⊢ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 27 | 16 | cjred | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ∗ ‘ 𝐵 ) = 𝐵 ) |
| 28 | 27 | oveq1d | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
| 29 | 26 28 | eqtrid | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
| 30 | 24 29 | eqtrd | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
| 31 | 23 30 | breqtrd | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 ≤ ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
| 32 | 16 22 31 | prodge0ld | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → 0 ≤ 𝐵 ) |
| 33 | 16 32 | jca | ⊢ ( ( ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) ) ∧ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) ) → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) ) |