This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for two eigenvectors A and B to be orthogonal. Generalization of Equation 1.31 of Hughes p. 49. (Contributed by NM, 23-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eigorthi.1 | ⊢ 𝐴 ∈ ℋ | |
| eigorthi.2 | ⊢ 𝐵 ∈ ℋ | ||
| eigorthi.3 | ⊢ 𝐶 ∈ ℂ | ||
| eigorthi.4 | ⊢ 𝐷 ∈ ℂ | ||
| Assertion | eigorthi | ⊢ ( ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigorthi.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | eigorthi.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | eigorthi.3 | ⊢ 𝐶 ∈ ℂ | |
| 4 | eigorthi.4 | ⊢ 𝐷 ∈ ℂ | |
| 5 | oveq2 | ⊢ ( ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( 𝐴 ·ih ( 𝐷 ·ℎ 𝐵 ) ) ) | |
| 6 | his5 | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐷 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) ) | |
| 7 | 4 1 2 6 | mp3an | ⊢ ( 𝐴 ·ih ( 𝐷 ·ℎ 𝐵 ) ) = ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) |
| 8 | 5 7 | eqtrdi | ⊢ ( ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) ) |
| 9 | oveq1 | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( ( 𝐶 ·ℎ 𝐴 ) ·ih 𝐵 ) ) | |
| 10 | ax-his3 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 ·ℎ 𝐴 ) ·ih 𝐵 ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) | |
| 11 | 3 1 2 10 | mp3an | ⊢ ( ( 𝐶 ·ℎ 𝐴 ) ·ih 𝐵 ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) |
| 12 | 9 11 | eqtrdi | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 13 | 8 12 | eqeqan12rd | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) ) |
| 14 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 15 | 4 | cjcli | ⊢ ( ∗ ‘ 𝐷 ) ∈ ℂ |
| 16 | mulcan2 | ⊢ ( ( ( ∗ ‘ 𝐷 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ≠ 0 ) ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ↔ ( ∗ ‘ 𝐷 ) = 𝐶 ) ) | |
| 17 | 15 3 16 | mp3an12 | ⊢ ( ( ( 𝐴 ·ih 𝐵 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐵 ) ≠ 0 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ↔ ( ∗ ‘ 𝐷 ) = 𝐶 ) ) |
| 18 | 14 17 | mpan | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ↔ ( ∗ ‘ 𝐷 ) = 𝐶 ) ) |
| 19 | eqcom | ⊢ ( ( ∗ ‘ 𝐷 ) = 𝐶 ↔ 𝐶 = ( ∗ ‘ 𝐷 ) ) | |
| 20 | 18 19 | bitrdi | ⊢ ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ↔ 𝐶 = ( ∗ ‘ 𝐷 ) ) ) |
| 21 | 20 | biimpcd | ⊢ ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) → ( ( 𝐴 ·ih 𝐵 ) ≠ 0 → 𝐶 = ( ∗ ‘ 𝐷 ) ) ) |
| 22 | 21 | necon1d | ⊢ ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) → ( 𝐶 ≠ ( ∗ ‘ 𝐷 ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 23 | 22 | com12 | ⊢ ( 𝐶 ≠ ( ∗ ‘ 𝐷 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) → ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 24 | oveq2 | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( ( ∗ ‘ 𝐷 ) · 0 ) ) | |
| 25 | oveq2 | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · 0 ) ) | |
| 26 | 3 | mul01i | ⊢ ( 𝐶 · 0 ) = 0 |
| 27 | 15 | mul01i | ⊢ ( ( ∗ ‘ 𝐷 ) · 0 ) = 0 |
| 28 | 26 27 | eqtr4i | ⊢ ( 𝐶 · 0 ) = ( ( ∗ ‘ 𝐷 ) · 0 ) |
| 29 | 25 28 | eqtrdi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) = ( ( ∗ ‘ 𝐷 ) · 0 ) ) |
| 30 | 24 29 | eqtr4d | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ) |
| 31 | 23 30 | impbid1 | ⊢ ( 𝐶 ≠ ( ∗ ‘ 𝐷 ) → ( ( ( ∗ ‘ 𝐷 ) · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐶 · ( 𝐴 ·ih 𝐵 ) ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |
| 32 | 13 31 | sylan9bb | ⊢ ( ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐶 ·ℎ 𝐴 ) ∧ ( 𝑇 ‘ 𝐵 ) = ( 𝐷 ·ℎ 𝐵 ) ) ∧ 𝐶 ≠ ( ∗ ‘ 𝐷 ) ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐵 ) ↔ ( 𝐴 ·ih 𝐵 ) = 0 ) ) |