This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition (first conjunct pair, that holds when T is a positive operator) for an eigenvalue B (second conjunct pair) to be nonnegative. Remark (ii) in Hughes p. 137. (Contributed by NM, 2-Jul-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eigpos.1 | |- A e. ~H |
|
| eigpos.2 | |- B e. CC |
||
| Assertion | eigposi | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( B e. RR /\ 0 <_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigpos.1 | |- A e. ~H |
|
| 2 | eigpos.2 | |- B e. CC |
|
| 3 | oveq2 | |- ( ( T ` A ) = ( B .h A ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) |
|
| 4 | 3 | eleq1d | |- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) e. RR <-> ( A .ih ( B .h A ) ) e. RR ) ) |
| 5 | 2 1 | hvmulcli | |- ( B .h A ) e. ~H |
| 6 | hire | |- ( ( A e. ~H /\ ( B .h A ) e. ~H ) -> ( ( A .ih ( B .h A ) ) e. RR <-> ( A .ih ( B .h A ) ) = ( ( B .h A ) .ih A ) ) ) |
|
| 7 | 1 5 6 | mp2an | |- ( ( A .ih ( B .h A ) ) e. RR <-> ( A .ih ( B .h A ) ) = ( ( B .h A ) .ih A ) ) |
| 8 | oveq1 | |- ( ( T ` A ) = ( B .h A ) -> ( ( T ` A ) .ih A ) = ( ( B .h A ) .ih A ) ) |
|
| 9 | 3 8 | eqeq12d | |- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> ( A .ih ( B .h A ) ) = ( ( B .h A ) .ih A ) ) ) |
| 10 | 7 9 | bitr4id | |- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( B .h A ) ) e. RR <-> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) ) |
| 11 | 4 10 | bitrd | |- ( ( T ` A ) = ( B .h A ) -> ( ( A .ih ( T ` A ) ) e. RR <-> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) ) |
| 12 | 11 | adantr | |- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) e. RR <-> ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) ) ) |
| 13 | 1 2 | eigrei | |- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) = ( ( T ` A ) .ih A ) <-> B e. RR ) ) |
| 14 | 12 13 | bitrd | |- ( ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) -> ( ( A .ih ( T ` A ) ) e. RR <-> B e. RR ) ) |
| 15 | 14 | biimpac | |- ( ( ( A .ih ( T ` A ) ) e. RR /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> B e. RR ) |
| 16 | 15 | adantlr | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> B e. RR ) |
| 17 | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) |
|
| 18 | 1 17 | mp1i | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih A ) e. RR ) |
| 19 | ax-his4 | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
|
| 20 | 1 19 | mpan | |- ( A =/= 0h -> 0 < ( A .ih A ) ) |
| 21 | 20 | ad2antll | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 < ( A .ih A ) ) |
| 22 | 18 21 | elrpd | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih A ) e. RR+ ) |
| 23 | simplr | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 <_ ( A .ih ( T ` A ) ) ) |
|
| 24 | 3 | ad2antrl | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih ( T ` A ) ) = ( A .ih ( B .h A ) ) ) |
| 25 | his5 | |- ( ( B e. CC /\ A e. ~H /\ A e. ~H ) -> ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) ) |
|
| 26 | 2 1 1 25 | mp3an | |- ( A .ih ( B .h A ) ) = ( ( * ` B ) x. ( A .ih A ) ) |
| 27 | 16 | cjred | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( * ` B ) = B ) |
| 28 | 27 | oveq1d | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( ( * ` B ) x. ( A .ih A ) ) = ( B x. ( A .ih A ) ) ) |
| 29 | 26 28 | eqtrid | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih ( B .h A ) ) = ( B x. ( A .ih A ) ) ) |
| 30 | 24 29 | eqtrd | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( A .ih ( T ` A ) ) = ( B x. ( A .ih A ) ) ) |
| 31 | 23 30 | breqtrd | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 <_ ( B x. ( A .ih A ) ) ) |
| 32 | 16 22 31 | prodge0ld | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> 0 <_ B ) |
| 33 | 16 32 | jca | |- ( ( ( ( A .ih ( T ` A ) ) e. RR /\ 0 <_ ( A .ih ( T ` A ) ) ) /\ ( ( T ` A ) = ( B .h A ) /\ A =/= 0h ) ) -> ( B e. RR /\ 0 <_ B ) ) |