This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A necessary and sufficient condition (that holds when T is a Hermitian operator) for an eigenvalue B to be real. Generalization of Equation 1.30 of Hughes p. 49. (Contributed by NM, 21-Jan-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eigre.1 | ⊢ 𝐴 ∈ ℋ | |
| eigre.2 | ⊢ 𝐵 ∈ ℂ | ||
| Assertion | eigrei | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eigre.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | eigre.2 | ⊢ 𝐵 ∈ ℂ | |
| 3 | oveq2 | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) ) | |
| 4 | his5 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) | |
| 5 | 2 1 1 4 | mp3an | ⊢ ( 𝐴 ·ih ( 𝐵 ·ℎ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) |
| 6 | 3 5 | eqtrdi | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) ) |
| 7 | oveq1 | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) ) | |
| 8 | ax-his3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) | |
| 9 | 2 1 1 8 | mp3an | ⊢ ( ( 𝐵 ·ℎ 𝐴 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) |
| 10 | 7 9 | eqtrdi | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) |
| 11 | 6 10 | eqeq12d | ⊢ ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ) ) |
| 12 | 1 1 | hicli | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 13 | ax-his4 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ ) → 0 < ( 𝐴 ·ih 𝐴 ) ) | |
| 14 | 1 13 | mpan | ⊢ ( 𝐴 ≠ 0ℎ → 0 < ( 𝐴 ·ih 𝐴 ) ) |
| 15 | 14 | gt0ne0d | ⊢ ( 𝐴 ≠ 0ℎ → ( 𝐴 ·ih 𝐴 ) ≠ 0 ) |
| 16 | 2 | cjcli | ⊢ ( ∗ ‘ 𝐵 ) ∈ ℂ |
| 17 | mulcan2 | ⊢ ( ( ( ∗ ‘ 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( ( 𝐴 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐴 ) ≠ 0 ) ) → ( ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) | |
| 18 | 16 2 17 | mp3an12 | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) ∈ ℂ ∧ ( 𝐴 ·ih 𝐴 ) ≠ 0 ) → ( ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
| 19 | 12 15 18 | sylancr | ⊢ ( 𝐴 ≠ 0ℎ → ( ( ( ∗ ‘ 𝐵 ) · ( 𝐴 ·ih 𝐴 ) ) = ( 𝐵 · ( 𝐴 ·ih 𝐴 ) ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
| 20 | 11 19 | sylan9bb | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) ) |
| 21 | 2 | cjrebi | ⊢ ( 𝐵 ∈ ℝ ↔ ( ∗ ‘ 𝐵 ) = 𝐵 ) |
| 22 | 20 21 | bitr4di | ⊢ ( ( ( 𝑇 ‘ 𝐴 ) = ( 𝐵 ·ℎ 𝐴 ) ∧ 𝐴 ≠ 0ℎ ) → ( ( 𝐴 ·ih ( 𝑇 ‘ 𝐴 ) ) = ( ( 𝑇 ‘ 𝐴 ) ·ih 𝐴 ) ↔ 𝐵 ∈ ℝ ) ) |