This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 29-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ef4p.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| Assertion | ef4p | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ef4p.1 | ⊢ 𝐹 = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝐴 ↑ 𝑛 ) / ( ! ‘ 𝑛 ) ) ) | |
| 2 | df-4 | ⊢ 4 = ( 3 + 1 ) | |
| 3 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 4 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | addcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 1 + 𝐴 ) ∈ ℂ ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐴 ∈ ℂ → ( 1 + 𝐴 ) ∈ ℂ ) |
| 8 | sqcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) | |
| 9 | 8 | halfcld | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 2 ) / 2 ) ∈ ℂ ) |
| 10 | 7 9 | addcld | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) ∈ ℂ ) |
| 11 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 12 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 13 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 14 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 15 | 5 | a1i | ⊢ ( 𝐴 ∈ ℂ → 1 ∈ ℂ ) |
| 16 | 1e0p1 | ⊢ 1 = ( 0 + 1 ) | |
| 17 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 18 | 0cnd | ⊢ ( 𝐴 ∈ ℂ → 0 ∈ ℂ ) | |
| 19 | 1 | efval2 | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) ) |
| 20 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 21 | 20 | sumeq1i | ⊢ Σ 𝑘 ∈ ℕ0 ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) |
| 22 | 19 21 | eqtr2di | ⊢ ( 𝐴 ∈ ℂ → Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) = ( exp ‘ 𝐴 ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) ) = ( 0 + ( exp ‘ 𝐴 ) ) ) |
| 24 | efcl | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) | |
| 25 | 24 | addlidd | ⊢ ( 𝐴 ∈ ℂ → ( 0 + ( exp ‘ 𝐴 ) ) = ( exp ‘ 𝐴 ) ) |
| 26 | 23 25 | eqtr2d | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( 0 + Σ 𝑘 ∈ ( ℤ≥ ‘ 0 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 27 | eft0val | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) = 1 ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 0 + ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) = ( 0 + 1 ) ) |
| 29 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 30 | 28 29 | eqtrdi | ⊢ ( 𝐴 ∈ ℂ → ( 0 + ( ( 𝐴 ↑ 0 ) / ( ! ‘ 0 ) ) ) = 1 ) |
| 31 | 1 16 17 4 18 26 30 | efsep | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( 1 + Σ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 32 | exp1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 1 ) = 𝐴 ) | |
| 33 | fac1 | ⊢ ( ! ‘ 1 ) = 1 | |
| 34 | 33 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ! ‘ 1 ) = 1 ) |
| 35 | 32 34 | oveq12d | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = ( 𝐴 / 1 ) ) |
| 36 | div1 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 1 ) = 𝐴 ) | |
| 37 | 35 36 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) = 𝐴 ) |
| 38 | 37 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 1 + ( ( 𝐴 ↑ 1 ) / ( ! ‘ 1 ) ) ) = ( 1 + 𝐴 ) ) |
| 39 | 1 13 14 4 15 31 38 | efsep | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( 1 + 𝐴 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 2 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 40 | fac2 | ⊢ ( ! ‘ 2 ) = 2 | |
| 41 | 40 | oveq2i | ⊢ ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) = ( ( 𝐴 ↑ 2 ) / 2 ) |
| 42 | 41 | oveq2i | ⊢ ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) ) = ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) |
| 43 | 42 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / ( ! ‘ 2 ) ) ) = ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) ) |
| 44 | 1 11 12 4 7 39 43 | efsep | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 3 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 45 | fac3 | ⊢ ( ! ‘ 3 ) = 6 | |
| 46 | 45 | oveq2i | ⊢ ( ( 𝐴 ↑ 3 ) / ( ! ‘ 3 ) ) = ( ( 𝐴 ↑ 3 ) / 6 ) |
| 47 | 46 | oveq2i | ⊢ ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / ( ! ‘ 3 ) ) ) = ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) |
| 48 | 47 | a1i | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / ( ! ‘ 3 ) ) ) = ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) ) |
| 49 | 1 2 3 4 10 44 48 | efsep | ⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) = ( ( ( ( 1 + 𝐴 ) + ( ( 𝐴 ↑ 2 ) / 2 ) ) + ( ( 𝐴 ↑ 3 ) / 6 ) ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 4 ) ( 𝐹 ‘ 𝑘 ) ) ) |