This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative law for division. (Contributed by NM, 2-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reccl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 1 / 𝐶 ) ∈ ℂ ) | |
| 2 | mulass | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 1 / 𝐶 ) ∈ ℂ ) → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) | |
| 3 | 1 2 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 4 | mulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) | |
| 5 | 4 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 6 | simp3l | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ∈ ℂ ) | |
| 7 | simp3r | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐶 ≠ 0 ) | |
| 8 | divrec | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) ) | |
| 9 | 5 6 7 8 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 1 / 𝐶 ) ) ) |
| 10 | simp2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → 𝐵 ∈ ℂ ) | |
| 11 | divrec | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) | |
| 12 | 10 6 7 11 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 · ( 𝐵 / 𝐶 ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐶 ) ) ) ) |
| 14 | 3 9 13 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐶 ) = ( 𝐴 · ( 𝐵 / 𝐶 ) ) ) |