This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express membership in a half-open integer interval in terms of the "less than or equal to" and "less than" predicates on integers, resp. K e. ( ZZ>=M ) <-> M <_ K , K e. ( K ..^ N ) <-> K < N . (Contributed by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzo3 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) ) | |
| 2 | elfzo2 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) | |
| 3 | eluzelz | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐾 ∈ ℤ ) | |
| 4 | fzolb | ⊢ ( 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) | |
| 5 | 3anass | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) ) | |
| 6 | 4 5 | bitri | ⊢ ( 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) ) |
| 7 | 6 | baib | ⊢ ( 𝐾 ∈ ℤ → ( 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) ) |
| 9 | 8 | pm5.32i | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝐾 < 𝑁 ) ) ) |
| 10 | 1 2 9 | 3bitr4i | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ( 𝐾 ..^ 𝑁 ) ) ) |