This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Peano-postulate-like theorem for downward closure of a half-open integer range. (Contributed by Mario Carneiro, 1-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano2fzor | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) | |
| 2 | elfzoel2 | ⊢ ( ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 4 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ..^ 𝑁 ) = ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 6 | 1 5 | eleqtrd | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 7 | peano2fzr | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) |
| 9 | 8 5 | eleqtrrd | ⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( 𝐾 + 1 ) ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) ) |