This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a subgroup of the group + , under the exponential function of a scaled complex number, is an Abelian group. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 12-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | efabl.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) | |
| efabl.2 | ⊢ 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 ) | ||
| efabl.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | ||
| efabl.4 | ⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) | ||
| Assertion | efabl | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efabl.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) | |
| 2 | efabl.2 | ⊢ 𝐺 = ( ( mulGrp ‘ ℂfld ) ↾s ran 𝐹 ) | |
| 3 | efabl.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 4 | efabl.4 | ⊢ ( 𝜑 → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 5 | eqid | ⊢ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( +g ‘ ( ℂfld ↾s 𝑋 ) ) = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) | |
| 8 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 9 | simp1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝜑 ) | |
| 10 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) | |
| 11 | eqid | ⊢ ( ℂfld ↾s 𝑋 ) = ( ℂfld ↾s 𝑋 ) | |
| 12 | 11 | subgbas | ⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑋 = ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 15 | 10 14 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑥 ∈ 𝑋 ) |
| 16 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) | |
| 17 | 16 14 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → 𝑦 ∈ 𝑋 ) |
| 18 | 3 4 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ) |
| 19 | 1 | efgh | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 | 18 19 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 22 | 11 21 | ressplusg | ⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 23 | 4 22 | syl | ⊢ ( 𝜑 → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → + = ( +g ‘ ( ℂfld ↾s 𝑋 ) ) ) |
| 25 | 24 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 + 𝑦 ) = ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) |
| 26 | 25 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) ) |
| 27 | mptexg | ⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) ∈ V ) | |
| 28 | 1 27 | eqeltrid | ⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝐹 ∈ V ) |
| 29 | rnexg | ⊢ ( 𝐹 ∈ V → ran 𝐹 ∈ V ) | |
| 30 | eqid | ⊢ ( mulGrp ‘ ℂfld ) = ( mulGrp ‘ ℂfld ) | |
| 31 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 32 | 30 31 | mgpplusg | ⊢ · = ( +g ‘ ( mulGrp ‘ ℂfld ) ) |
| 33 | 2 32 | ressplusg | ⊢ ( ran 𝐹 ∈ V → · = ( +g ‘ 𝐺 ) ) |
| 34 | 4 28 29 33 | 4syl | ⊢ ( 𝜑 → · = ( +g ‘ 𝐺 ) ) |
| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → · = ( +g ‘ 𝐺 ) ) |
| 36 | 35 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 37 | 20 26 36 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | 9 15 17 37 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑋 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ ( ℂfld ↾s 𝑋 ) ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 | fvex | ⊢ ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ V | |
| 40 | 39 1 | fnmpti | ⊢ 𝐹 Fn 𝑋 |
| 41 | dffn4 | ⊢ ( 𝐹 Fn 𝑋 ↔ 𝐹 : 𝑋 –onto→ ran 𝐹 ) | |
| 42 | 40 41 | mpbi | ⊢ 𝐹 : 𝑋 –onto→ ran 𝐹 |
| 43 | eqidd | ⊢ ( 𝜑 → 𝐹 = 𝐹 ) | |
| 44 | eff | ⊢ exp : ℂ ⟶ ℂ | |
| 45 | 44 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → exp : ℂ ⟶ ℂ ) |
| 46 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) |
| 47 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 48 | 47 | subgss | ⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ ) |
| 49 | 4 48 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ ℂ ) |
| 50 | 49 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ ℂ ) |
| 51 | 46 50 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 · 𝑥 ) ∈ ℂ ) |
| 52 | 45 51 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ ) |
| 54 | 1 | rnmptss | ⊢ ( ∀ 𝑥 ∈ 𝑋 ( exp ‘ ( 𝐴 · 𝑥 ) ) ∈ ℂ → ran 𝐹 ⊆ ℂ ) |
| 55 | 30 47 | mgpbas | ⊢ ℂ = ( Base ‘ ( mulGrp ‘ ℂfld ) ) |
| 56 | 2 55 | ressbas2 | ⊢ ( ran 𝐹 ⊆ ℂ → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
| 57 | 53 54 56 | 3syl | ⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝐺 ) ) |
| 58 | 43 13 57 | foeq123d | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 –onto→ ran 𝐹 ↔ 𝐹 : ( Base ‘ ( ℂfld ↾s 𝑋 ) ) –onto→ ( Base ‘ 𝐺 ) ) ) |
| 59 | 42 58 | mpbii | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ ( ℂfld ↾s 𝑋 ) ) –onto→ ( Base ‘ 𝐺 ) ) |
| 60 | cnring | ⊢ ℂfld ∈ Ring | |
| 61 | ringabl | ⊢ ( ℂfld ∈ Ring → ℂfld ∈ Abel ) | |
| 62 | 60 61 | ax-mp | ⊢ ℂfld ∈ Abel |
| 63 | 11 | subgabl | ⊢ ( ( ℂfld ∈ Abel ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) → ( ℂfld ↾s 𝑋 ) ∈ Abel ) |
| 64 | 62 4 63 | sylancr | ⊢ ( 𝜑 → ( ℂfld ↾s 𝑋 ) ∈ Abel ) |
| 65 | 5 6 7 8 38 59 64 | ghmabl | ⊢ ( 𝜑 → 𝐺 ∈ Abel ) |