This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponential function of a scaled complex number is a group homomorphism from the group of complex numbers under addition to the set of complex numbers under multiplication. (Contributed by Paul Chapman, 25-Apr-2008) (Revised by Mario Carneiro, 11-May-2014) (Revised by Thierry Arnoux, 26-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | efgh.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) | |
| Assertion | efgh | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) = ( ( 𝐹 ‘ 𝐵 ) · ( 𝐹 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efgh.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) | |
| 2 | simp1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | simp1r | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 4 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 5 | 4 | subgss | ⊢ ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) → 𝑋 ⊆ ℂ ) |
| 6 | 3 5 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝑋 ⊆ ℂ ) |
| 7 | simp2 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 8 | 6 7 | sseldd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 9 | simp3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ 𝑋 ) | |
| 10 | 6 9 | sseldd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 11 | 2 8 10 | adddid | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) = ( exp ‘ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) ) |
| 13 | 2 8 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 14 | 2 10 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 15 | efadd | ⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ ( 𝐴 · 𝐶 ) ∈ ℂ ) → ( exp ‘ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 18 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) | |
| 19 | 18 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( exp ‘ ( 𝐴 · 𝑥 ) ) = ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 20 | 19 | cbvmptv | ⊢ ( 𝑥 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑥 ) ) ) = ( 𝑦 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 21 | 1 20 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝑋 ↦ ( exp ‘ ( 𝐴 · 𝑦 ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑦 = ( 𝐵 + 𝐶 ) → ( 𝐴 · 𝑦 ) = ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑦 = ( 𝐵 + 𝐶 ) → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) ) |
| 24 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 25 | 24 | subgcl | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 26 | 25 | 3adant1l | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 + 𝐶 ) ∈ 𝑋 ) |
| 27 | fvexd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) ∈ V ) | |
| 28 | 21 23 26 27 | fvmptd3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) = ( exp ‘ ( 𝐴 · ( 𝐵 + 𝐶 ) ) ) ) |
| 29 | oveq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) ) | |
| 30 | 29 | fveq2d | ⊢ ( 𝑦 = 𝐵 → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · 𝐵 ) ) ) |
| 31 | fvexd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝐵 ) ) ∈ V ) | |
| 32 | 21 30 7 31 | fvmptd3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐵 ) = ( exp ‘ ( 𝐴 · 𝐵 ) ) ) |
| 33 | oveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐶 ) ) | |
| 34 | 33 | fveq2d | ⊢ ( 𝑦 = 𝐶 → ( exp ‘ ( 𝐴 · 𝑦 ) ) = ( exp ‘ ( 𝐴 · 𝐶 ) ) ) |
| 35 | fvexd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( exp ‘ ( 𝐴 · 𝐶 ) ) ∈ V ) | |
| 36 | 21 34 9 35 | fvmptd3 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐶 ) = ( exp ‘ ( 𝐴 · 𝐶 ) ) ) |
| 37 | 32 36 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐵 ) · ( 𝐹 ‘ 𝐶 ) ) = ( ( exp ‘ ( 𝐴 · 𝐵 ) ) · ( exp ‘ ( 𝐴 · 𝐶 ) ) ) ) |
| 38 | 17 28 37 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑋 ∈ ( SubGrp ‘ ℂfld ) ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝐵 + 𝐶 ) ) = ( ( 𝐹 ‘ 𝐵 ) · ( 𝐹 ‘ 𝐶 ) ) ) |