This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality deduction for onto functions. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1eq123d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| f1eq123d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
| f1eq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | foeq123d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –onto→ 𝐶 ↔ 𝐺 : 𝐵 –onto→ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
| 2 | f1eq123d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 3 | f1eq123d.3 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 4 | foeq1 | ⊢ ( 𝐹 = 𝐺 → ( 𝐹 : 𝐴 –onto→ 𝐶 ↔ 𝐺 : 𝐴 –onto→ 𝐶 ) ) | |
| 5 | 1 4 | syl | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –onto→ 𝐶 ↔ 𝐺 : 𝐴 –onto→ 𝐶 ) ) |
| 6 | foeq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐺 : 𝐴 –onto→ 𝐶 ↔ 𝐺 : 𝐵 –onto→ 𝐶 ) ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → ( 𝐺 : 𝐴 –onto→ 𝐶 ↔ 𝐺 : 𝐵 –onto→ 𝐶 ) ) |
| 8 | foeq3 | ⊢ ( 𝐶 = 𝐷 → ( 𝐺 : 𝐵 –onto→ 𝐶 ↔ 𝐺 : 𝐵 –onto→ 𝐷 ) ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 –onto→ 𝐶 ↔ 𝐺 : 𝐵 –onto→ 𝐷 ) ) |
| 10 | 5 7 9 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 –onto→ 𝐶 ↔ 𝐺 : 𝐵 –onto→ 𝐷 ) ) |