This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvresntr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| dvresntr.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | ||
| dvresntr.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvresntr.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | ||
| dvresntr.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| dvresntr.i | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 ) | ||
| Assertion | dvresntr | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvresntr.s | ⊢ ( 𝜑 → 𝑆 ⊆ ℂ ) | |
| 2 | dvresntr.x | ⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) | |
| 3 | dvresntr.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 4 | dvresntr.j | ⊢ 𝐽 = ( 𝐾 ↾t 𝑆 ) | |
| 5 | dvresntr.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 6 | dvresntr.i | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) = 𝑌 ) | |
| 7 | 5 4 | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑋 ⊆ 𝑆 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 8 | 1 3 2 2 7 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ↾ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) ) |
| 9 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ ℂ → 𝐹 Fn 𝑋 ) | |
| 10 | fnresdm | ⊢ ( 𝐹 Fn 𝑋 → ( 𝐹 ↾ 𝑋 ) = 𝐹 ) | |
| 11 | 3 9 10 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) = 𝐹 ) |
| 12 | 11 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ↾ 𝑋 ) ) = ( 𝑆 D 𝐹 ) ) |
| 13 | 5 | cnfldtopon | ⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 14 | resttopon | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝑆 ⊆ ℂ ) → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) | |
| 15 | 13 1 14 | sylancr | ⊢ ( 𝜑 → ( 𝐾 ↾t 𝑆 ) ∈ ( TopOn ‘ 𝑆 ) ) |
| 16 | 4 15 | eqeltrid | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑆 ) ) |
| 17 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝐽 ∈ Top ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 19 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑆 ) → 𝑆 = ∪ 𝐽 ) | |
| 20 | 16 19 | syl | ⊢ ( 𝜑 → 𝑆 = ∪ 𝐽 ) |
| 21 | 2 20 | sseqtrd | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝐽 ) |
| 22 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 23 | 22 | ntridm | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
| 24 | 18 21 23 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) |
| 25 | 6 | fveq2d | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) |
| 26 | 24 25 6 | 3eqtr3d | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑌 ) = 𝑌 ) |
| 27 | 26 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ 𝑌 ) ) |
| 28 | 22 | ntrss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑋 ⊆ ∪ 𝐽 ) → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 29 | 18 21 28 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ⊆ 𝑋 ) |
| 30 | 6 29 | eqsstrrd | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 31 | 30 2 | sstrd | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑆 ) |
| 32 | 5 4 | dvres | ⊢ ( ( ( 𝑆 ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ 𝑆 ∧ 𝑌 ⊆ 𝑆 ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 33 | 1 3 2 31 32 | syl22anc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) = ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑌 ) ) ) |
| 34 | 6 | reseq2d | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( ( 𝑆 D 𝐹 ) ↾ 𝑌 ) ) |
| 35 | 27 33 34 | 3eqtr4rd | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ↾ ( ( int ‘ 𝐽 ) ‘ 𝑋 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) ) |
| 36 | 8 12 35 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) = ( 𝑆 D ( 𝐹 ↾ 𝑌 ) ) ) |