This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: expand the function from an open set to its closure. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvresntr.s | |- ( ph -> S C_ CC ) |
|
| dvresntr.x | |- ( ph -> X C_ S ) |
||
| dvresntr.f | |- ( ph -> F : X --> CC ) |
||
| dvresntr.j | |- J = ( K |`t S ) |
||
| dvresntr.k | |- K = ( TopOpen ` CCfld ) |
||
| dvresntr.i | |- ( ph -> ( ( int ` J ) ` X ) = Y ) |
||
| Assertion | dvresntr | |- ( ph -> ( S _D F ) = ( S _D ( F |` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvresntr.s | |- ( ph -> S C_ CC ) |
|
| 2 | dvresntr.x | |- ( ph -> X C_ S ) |
|
| 3 | dvresntr.f | |- ( ph -> F : X --> CC ) |
|
| 4 | dvresntr.j | |- J = ( K |`t S ) |
|
| 5 | dvresntr.k | |- K = ( TopOpen ` CCfld ) |
|
| 6 | dvresntr.i | |- ( ph -> ( ( int ` J ) ` X ) = Y ) |
|
| 7 | 5 4 | dvres | |- ( ( ( S C_ CC /\ F : X --> CC ) /\ ( X C_ S /\ X C_ S ) ) -> ( S _D ( F |` X ) ) = ( ( S _D F ) |` ( ( int ` J ) ` X ) ) ) |
| 8 | 1 3 2 2 7 | syl22anc | |- ( ph -> ( S _D ( F |` X ) ) = ( ( S _D F ) |` ( ( int ` J ) ` X ) ) ) |
| 9 | ffn | |- ( F : X --> CC -> F Fn X ) |
|
| 10 | fnresdm | |- ( F Fn X -> ( F |` X ) = F ) |
|
| 11 | 3 9 10 | 3syl | |- ( ph -> ( F |` X ) = F ) |
| 12 | 11 | oveq2d | |- ( ph -> ( S _D ( F |` X ) ) = ( S _D F ) ) |
| 13 | 5 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 14 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
|
| 15 | 13 1 14 | sylancr | |- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 16 | 4 15 | eqeltrid | |- ( ph -> J e. ( TopOn ` S ) ) |
| 17 | topontop | |- ( J e. ( TopOn ` S ) -> J e. Top ) |
|
| 18 | 16 17 | syl | |- ( ph -> J e. Top ) |
| 19 | toponuni | |- ( J e. ( TopOn ` S ) -> S = U. J ) |
|
| 20 | 16 19 | syl | |- ( ph -> S = U. J ) |
| 21 | 2 20 | sseqtrd | |- ( ph -> X C_ U. J ) |
| 22 | eqid | |- U. J = U. J |
|
| 23 | 22 | ntridm | |- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
| 24 | 18 21 23 | syl2anc | |- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` X ) ) |
| 25 | 6 | fveq2d | |- ( ph -> ( ( int ` J ) ` ( ( int ` J ) ` X ) ) = ( ( int ` J ) ` Y ) ) |
| 26 | 24 25 6 | 3eqtr3d | |- ( ph -> ( ( int ` J ) ` Y ) = Y ) |
| 27 | 26 | reseq2d | |- ( ph -> ( ( S _D F ) |` ( ( int ` J ) ` Y ) ) = ( ( S _D F ) |` Y ) ) |
| 28 | 22 | ntrss2 | |- ( ( J e. Top /\ X C_ U. J ) -> ( ( int ` J ) ` X ) C_ X ) |
| 29 | 18 21 28 | syl2anc | |- ( ph -> ( ( int ` J ) ` X ) C_ X ) |
| 30 | 6 29 | eqsstrrd | |- ( ph -> Y C_ X ) |
| 31 | 30 2 | sstrd | |- ( ph -> Y C_ S ) |
| 32 | 5 4 | dvres | |- ( ( ( S C_ CC /\ F : X --> CC ) /\ ( X C_ S /\ Y C_ S ) ) -> ( S _D ( F |` Y ) ) = ( ( S _D F ) |` ( ( int ` J ) ` Y ) ) ) |
| 33 | 1 3 2 31 32 | syl22anc | |- ( ph -> ( S _D ( F |` Y ) ) = ( ( S _D F ) |` ( ( int ` J ) ` Y ) ) ) |
| 34 | 6 | reseq2d | |- ( ph -> ( ( S _D F ) |` ( ( int ` J ) ` X ) ) = ( ( S _D F ) |` Y ) ) |
| 35 | 27 33 34 | 3eqtr4rd | |- ( ph -> ( ( S _D F ) |` ( ( int ` J ) ` X ) ) = ( S _D ( F |` Y ) ) ) |
| 36 | 8 12 35 | 3eqtr3d | |- ( ph -> ( S _D F ) = ( S _D ( F |` Y ) ) ) |