This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The antiderivative of the logarithm. (Contributed by Mario Carneiro, 21-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | advlog | ⊢ ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 2 | 1 | a1i | ⊢ ( ⊤ → ℝ ∈ { ℝ , ℂ } ) |
| 3 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 4 | 3 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 5 | 4 | recnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℂ ) |
| 6 | 1cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ ) | |
| 7 | recn | ⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℂ ) |
| 9 | 1red | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℝ ) | |
| 10 | 2 | dvmptid | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ ↦ 1 ) ) |
| 11 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
| 12 | 11 | a1i | ⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 13 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 14 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 15 | ioorp | ⊢ ( 0 (,) +∞ ) = ℝ+ | |
| 16 | iooretop | ⊢ ( 0 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 17 | 15 16 | eqeltrri | ⊢ ℝ+ ∈ ( topGen ‘ ran (,) ) |
| 18 | 17 | a1i | ⊢ ( ⊤ → ℝ+ ∈ ( topGen ‘ ran (,) ) ) |
| 19 | 2 8 9 10 12 13 14 18 | dvmptres | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ 1 ) ) |
| 20 | relogcl | ⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) | |
| 21 | 20 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 22 | peano2rem | ⊢ ( ( log ‘ 𝑥 ) ∈ ℝ → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℝ ) | |
| 23 | 21 22 | syl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℝ ) |
| 24 | 23 | recnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( log ‘ 𝑥 ) − 1 ) ∈ ℂ ) |
| 25 | rpreccl | ⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) | |
| 26 | 25 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 27 | 26 | rpcnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℂ ) |
| 28 | 21 | recnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 29 | relogf1o | ⊢ ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ | |
| 30 | f1of | ⊢ ( ( log ↾ ℝ+ ) : ℝ+ –1-1-onto→ ℝ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) | |
| 31 | 29 30 | mp1i | ⊢ ( ⊤ → ( log ↾ ℝ+ ) : ℝ+ ⟶ ℝ ) |
| 32 | 31 | feqmptd | ⊢ ( ⊤ → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) ) |
| 33 | fvres | ⊢ ( 𝑥 ∈ ℝ+ → ( ( log ↾ ℝ+ ) ‘ 𝑥 ) = ( log ‘ 𝑥 ) ) | |
| 34 | 33 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( log ↾ ℝ+ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |
| 35 | 32 34 | eqtrdi | ⊢ ( ⊤ → ( log ↾ ℝ+ ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 36 | 35 | oveq2d | ⊢ ( ⊤ → ( ℝ D ( log ↾ ℝ+ ) ) = ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) ) |
| 37 | dvrelog | ⊢ ( ℝ D ( log ↾ ℝ+ ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) | |
| 38 | 36 37 | eqtr3di | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 39 | 0cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 0 ∈ ℂ ) | |
| 40 | 1cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 41 | 0cnd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ ) → 0 ∈ ℂ ) | |
| 42 | 1cnd | ⊢ ( ⊤ → 1 ∈ ℂ ) | |
| 43 | 2 42 | dvmptc | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ ↦ 1 ) ) = ( 𝑥 ∈ ℝ ↦ 0 ) ) |
| 44 | 2 40 41 43 12 13 14 18 | dvmptres | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ 1 ) ) = ( 𝑥 ∈ ℝ+ ↦ 0 ) ) |
| 45 | 2 28 27 38 6 39 44 | dvmptsub | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − 1 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 1 / 𝑥 ) − 0 ) ) ) |
| 46 | 27 | subid1d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 / 𝑥 ) − 0 ) = ( 1 / 𝑥 ) ) |
| 47 | 46 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( 1 / 𝑥 ) − 0 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 48 | 45 47 | eqtrd | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( ( log ‘ 𝑥 ) − 1 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 49 | 2 5 6 19 24 27 48 | dvmptmul | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) ) ) |
| 50 | 24 | mullidd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) = ( ( log ‘ 𝑥 ) − 1 ) ) |
| 51 | rpne0 | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ≠ 0 ) | |
| 52 | 51 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≠ 0 ) |
| 53 | 5 52 | recid2d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 / 𝑥 ) · 𝑥 ) = 1 ) |
| 54 | 50 53 | oveq12d | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) = ( ( ( log ‘ 𝑥 ) − 1 ) + 1 ) ) |
| 55 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 56 | npcan | ⊢ ( ( ( log ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( log ‘ 𝑥 ) − 1 ) + 1 ) = ( log ‘ 𝑥 ) ) | |
| 57 | 28 55 56 | sylancl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( log ‘ 𝑥 ) − 1 ) + 1 ) = ( log ‘ 𝑥 ) ) |
| 58 | 54 57 | eqtrd | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) = ( log ‘ 𝑥 ) ) |
| 59 | 58 | mpteq2dva | ⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( 1 · ( ( log ‘ 𝑥 ) − 1 ) ) + ( ( 1 / 𝑥 ) · 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 60 | 49 59 | eqtrd | ⊢ ( ⊤ → ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) ) |
| 61 | 60 | mptru | ⊢ ( ℝ D ( 𝑥 ∈ ℝ+ ↦ ( 𝑥 · ( ( log ‘ 𝑥 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( log ‘ 𝑥 ) ) |