This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | dvdsrval | ⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr.2 | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsr.3 | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 6 | 5 | eleq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ( Base ‘ 𝑟 ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 | 5 | rexeqdv | ⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ) |
| 8 | 6 7 | anbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 10 | 9 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 11 | 10 | oveqd | ⊢ ( 𝑟 = 𝑅 → ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = ( 𝑧 · 𝑥 ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ↔ ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 13 | 12 | rexbidv | ⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) |
| 14 | 13 | anbi2d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) ) |
| 15 | 8 14 | bitrd | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) ) |
| 16 | 15 | opabbidv | ⊢ ( 𝑟 = 𝑅 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 17 | df-dvdsr | ⊢ ∥r = ( 𝑟 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑟 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑟 ) ( 𝑧 ( .r ‘ 𝑟 ) 𝑥 ) = 𝑦 ) } ) | |
| 18 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | eqcom | ⊢ ( ( 𝑧 · 𝑥 ) = 𝑦 ↔ 𝑦 = ( 𝑧 · 𝑥 ) ) | |
| 20 | 19 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ↔ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑧 · 𝑥 ) ) |
| 21 | 20 | abbii | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } = { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑧 · 𝑥 ) } |
| 22 | 18 | abrexex | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 𝑦 = ( 𝑧 · 𝑥 ) } ∈ V |
| 23 | 21 22 | eqeltri | ⊢ { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } ∈ V |
| 24 | 23 | a1i | ⊢ ( 𝑥 ∈ 𝐵 → { 𝑦 ∣ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 } ∈ V ) |
| 25 | 18 24 | opabex3 | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ∈ V |
| 26 | 16 17 25 | fvmpt | ⊢ ( 𝑅 ∈ V → ( ∥r ‘ 𝑅 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 27 | 2 26 | eqtrid | ⊢ ( 𝑅 ∈ V → ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 28 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( ∥r ‘ 𝑅 ) = ∅ ) | |
| 29 | 2 28 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → ∥ = ∅ ) |
| 30 | opabn0 | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ≠ ∅ ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) ) | |
| 31 | n0i | ⊢ ( 𝑥 ∈ 𝐵 → ¬ 𝐵 = ∅ ) | |
| 32 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) | |
| 33 | 1 32 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
| 34 | 31 33 | nsyl2 | ⊢ ( 𝑥 ∈ 𝐵 → 𝑅 ∈ V ) |
| 35 | 34 | adantr | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑅 ∈ V ) |
| 36 | 35 | exlimivv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) → 𝑅 ∈ V ) |
| 37 | 30 36 | sylbi | ⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ≠ ∅ → 𝑅 ∈ V ) |
| 38 | 37 | necon1bi | ⊢ ( ¬ 𝑅 ∈ V → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } = ∅ ) |
| 39 | 29 38 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } ) |
| 40 | 27 39 | pm2.61i | ⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑧 ∈ 𝐵 ( 𝑧 · 𝑥 ) = 𝑦 ) } |