This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the divides relation. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 6-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr.1 | |- B = ( Base ` R ) |
|
| dvdsr.2 | |- .|| = ( ||r ` R ) |
||
| dvdsr.3 | |- .x. = ( .r ` R ) |
||
| Assertion | dvdsrval | |- .|| = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr.1 | |- B = ( Base ` R ) |
|
| 2 | dvdsr.2 | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsr.3 | |- .x. = ( .r ` R ) |
|
| 4 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 6 | 5 | eleq2d | |- ( r = R -> ( x e. ( Base ` r ) <-> x e. B ) ) |
| 7 | 5 | rexeqdv | |- ( r = R -> ( E. z e. ( Base ` r ) ( z ( .r ` r ) x ) = y <-> E. z e. B ( z ( .r ` r ) x ) = y ) ) |
| 8 | 6 7 | anbi12d | |- ( r = R -> ( ( x e. ( Base ` r ) /\ E. z e. ( Base ` r ) ( z ( .r ` r ) x ) = y ) <-> ( x e. B /\ E. z e. B ( z ( .r ` r ) x ) = y ) ) ) |
| 9 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 10 | 9 3 | eqtr4di | |- ( r = R -> ( .r ` r ) = .x. ) |
| 11 | 10 | oveqd | |- ( r = R -> ( z ( .r ` r ) x ) = ( z .x. x ) ) |
| 12 | 11 | eqeq1d | |- ( r = R -> ( ( z ( .r ` r ) x ) = y <-> ( z .x. x ) = y ) ) |
| 13 | 12 | rexbidv | |- ( r = R -> ( E. z e. B ( z ( .r ` r ) x ) = y <-> E. z e. B ( z .x. x ) = y ) ) |
| 14 | 13 | anbi2d | |- ( r = R -> ( ( x e. B /\ E. z e. B ( z ( .r ` r ) x ) = y ) <-> ( x e. B /\ E. z e. B ( z .x. x ) = y ) ) ) |
| 15 | 8 14 | bitrd | |- ( r = R -> ( ( x e. ( Base ` r ) /\ E. z e. ( Base ` r ) ( z ( .r ` r ) x ) = y ) <-> ( x e. B /\ E. z e. B ( z .x. x ) = y ) ) ) |
| 16 | 15 | opabbidv | |- ( r = R -> { <. x , y >. | ( x e. ( Base ` r ) /\ E. z e. ( Base ` r ) ( z ( .r ` r ) x ) = y ) } = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } ) |
| 17 | df-dvdsr | |- ||r = ( r e. _V |-> { <. x , y >. | ( x e. ( Base ` r ) /\ E. z e. ( Base ` r ) ( z ( .r ` r ) x ) = y ) } ) |
|
| 18 | 1 | fvexi | |- B e. _V |
| 19 | eqcom | |- ( ( z .x. x ) = y <-> y = ( z .x. x ) ) |
|
| 20 | 19 | rexbii | |- ( E. z e. B ( z .x. x ) = y <-> E. z e. B y = ( z .x. x ) ) |
| 21 | 20 | abbii | |- { y | E. z e. B ( z .x. x ) = y } = { y | E. z e. B y = ( z .x. x ) } |
| 22 | 18 | abrexex | |- { y | E. z e. B y = ( z .x. x ) } e. _V |
| 23 | 21 22 | eqeltri | |- { y | E. z e. B ( z .x. x ) = y } e. _V |
| 24 | 23 | a1i | |- ( x e. B -> { y | E. z e. B ( z .x. x ) = y } e. _V ) |
| 25 | 18 24 | opabex3 | |- { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } e. _V |
| 26 | 16 17 25 | fvmpt | |- ( R e. _V -> ( ||r ` R ) = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } ) |
| 27 | 2 26 | eqtrid | |- ( R e. _V -> .|| = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } ) |
| 28 | fvprc | |- ( -. R e. _V -> ( ||r ` R ) = (/) ) |
|
| 29 | 2 28 | eqtrid | |- ( -. R e. _V -> .|| = (/) ) |
| 30 | opabn0 | |- ( { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } =/= (/) <-> E. x E. y ( x e. B /\ E. z e. B ( z .x. x ) = y ) ) |
|
| 31 | n0i | |- ( x e. B -> -. B = (/) ) |
|
| 32 | fvprc | |- ( -. R e. _V -> ( Base ` R ) = (/) ) |
|
| 33 | 1 32 | eqtrid | |- ( -. R e. _V -> B = (/) ) |
| 34 | 31 33 | nsyl2 | |- ( x e. B -> R e. _V ) |
| 35 | 34 | adantr | |- ( ( x e. B /\ E. z e. B ( z .x. x ) = y ) -> R e. _V ) |
| 36 | 35 | exlimivv | |- ( E. x E. y ( x e. B /\ E. z e. B ( z .x. x ) = y ) -> R e. _V ) |
| 37 | 30 36 | sylbi | |- ( { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } =/= (/) -> R e. _V ) |
| 38 | 37 | necon1bi | |- ( -. R e. _V -> { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } = (/) ) |
| 39 | 29 38 | eqtr4d | |- ( -. R e. _V -> .|| = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } ) |
| 40 | 27 39 | pm2.61i | |- .|| = { <. x , y >. | ( x e. B /\ E. z e. B ( z .x. x ) = y ) } |