This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the (right) divisibility relation in a ring. Access to the left divisibility relation is available through ( ||r( oppRR ) ) . (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-dvdsr | ⊢ ∥r = ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdsr | ⊢ ∥r | |
| 1 | vw | ⊢ 𝑤 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | vy | ⊢ 𝑦 | |
| 5 | 3 | cv | ⊢ 𝑥 |
| 6 | cbs | ⊢ Base | |
| 7 | 1 | cv | ⊢ 𝑤 |
| 8 | 7 6 | cfv | ⊢ ( Base ‘ 𝑤 ) |
| 9 | 5 8 | wcel | ⊢ 𝑥 ∈ ( Base ‘ 𝑤 ) |
| 10 | vz | ⊢ 𝑧 | |
| 11 | 10 | cv | ⊢ 𝑧 |
| 12 | cmulr | ⊢ .r | |
| 13 | 7 12 | cfv | ⊢ ( .r ‘ 𝑤 ) |
| 14 | 11 5 13 | co | ⊢ ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) |
| 15 | 4 | cv | ⊢ 𝑦 |
| 16 | 14 15 | wceq | ⊢ ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 |
| 17 | 16 10 8 | wrex | ⊢ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 |
| 18 | 9 17 | wa | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 ) |
| 19 | 18 3 4 | copab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } ) |
| 21 | 0 20 | wceq | ⊢ ∥r = ( 𝑤 ∈ V ↦ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ ( Base ‘ 𝑤 ) ∧ ∃ 𝑧 ∈ ( Base ‘ 𝑤 ) ( 𝑧 ( .r ‘ 𝑤 ) 𝑥 ) = 𝑦 ) } ) |