This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
||
| rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
||
| Assertion | dvdsrpropd | |- ( ph -> ( ||r ` K ) = ( ||r ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidpropd.1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | rngidpropd.2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | rngidpropd.3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
|
| 4 | 3 | anassrs | |- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) |
| 5 | 4 | eqeq1d | |- ( ( ( ph /\ x e. B ) /\ y e. B ) -> ( ( x ( .r ` K ) y ) = z <-> ( x ( .r ` L ) y ) = z ) ) |
| 6 | 5 | an32s | |- ( ( ( ph /\ y e. B ) /\ x e. B ) -> ( ( x ( .r ` K ) y ) = z <-> ( x ( .r ` L ) y ) = z ) ) |
| 7 | 6 | rexbidva | |- ( ( ph /\ y e. B ) -> ( E. x e. B ( x ( .r ` K ) y ) = z <-> E. x e. B ( x ( .r ` L ) y ) = z ) ) |
| 8 | 7 | pm5.32da | |- ( ph -> ( ( y e. B /\ E. x e. B ( x ( .r ` K ) y ) = z ) <-> ( y e. B /\ E. x e. B ( x ( .r ` L ) y ) = z ) ) ) |
| 9 | 1 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` K ) ) ) |
| 10 | 1 | rexeqdv | |- ( ph -> ( E. x e. B ( x ( .r ` K ) y ) = z <-> E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) ) |
| 11 | 9 10 | anbi12d | |- ( ph -> ( ( y e. B /\ E. x e. B ( x ( .r ` K ) y ) = z ) <-> ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) ) ) |
| 12 | 2 | eleq2d | |- ( ph -> ( y e. B <-> y e. ( Base ` L ) ) ) |
| 13 | 2 | rexeqdv | |- ( ph -> ( E. x e. B ( x ( .r ` L ) y ) = z <-> E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) ) |
| 14 | 12 13 | anbi12d | |- ( ph -> ( ( y e. B /\ E. x e. B ( x ( .r ` L ) y ) = z ) <-> ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) ) ) |
| 15 | 8 11 14 | 3bitr3d | |- ( ph -> ( ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) <-> ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) ) ) |
| 16 | 15 | opabbidv | |- ( ph -> { <. y , z >. | ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) } = { <. y , z >. | ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) } ) |
| 17 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 18 | eqid | |- ( ||r ` K ) = ( ||r ` K ) |
|
| 19 | eqid | |- ( .r ` K ) = ( .r ` K ) |
|
| 20 | 17 18 19 | dvdsrval | |- ( ||r ` K ) = { <. y , z >. | ( y e. ( Base ` K ) /\ E. x e. ( Base ` K ) ( x ( .r ` K ) y ) = z ) } |
| 21 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 22 | eqid | |- ( ||r ` L ) = ( ||r ` L ) |
|
| 23 | eqid | |- ( .r ` L ) = ( .r ` L ) |
|
| 24 | 21 22 23 | dvdsrval | |- ( ||r ` L ) = { <. y , z >. | ( y e. ( Base ` L ) /\ E. x e. ( Base ` L ) ( x ( .r ` L ) y ) = z ) } |
| 25 | 16 20 24 | 3eqtr4g | |- ( ph -> ( ||r ` K ) = ( ||r ` L ) ) |