This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| dvdsr0.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| dvdsr0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | dvdsr02 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr0.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | dvdsr0.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 3 | dvdsr0.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 3 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐵 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 7 | 1 2 6 | dvdsr2 | ⊢ ( 0 ∈ 𝐵 → ( 0 ∥ 𝑋 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ) ) |
| 8 | 5 7 | syl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∥ 𝑋 ↔ ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ) ) |
| 9 | 1 6 3 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 0 ) |
| 10 | 9 | eqeq1d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 0 = 𝑋 ) ) |
| 11 | eqcom | ⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) | |
| 12 | 10 11 | bitrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
| 13 | 12 | rexbidva | ⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = 0 ) ) |
| 14 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 15 | 1 | grpbn0 | ⊢ ( 𝑅 ∈ Grp → 𝐵 ≠ ∅ ) |
| 16 | r19.9rzv | ⊢ ( 𝐵 ≠ ∅ → ( 𝑋 = 0 ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = 0 ) ) | |
| 17 | 14 15 16 | 3syl | ⊢ ( 𝑅 ∈ Ring → ( 𝑋 = 0 ↔ ∃ 𝑥 ∈ 𝐵 𝑋 = 0 ) ) |
| 18 | 13 17 | bitr4d | ⊢ ( 𝑅 ∈ Ring → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
| 19 | 18 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ∃ 𝑥 ∈ 𝐵 ( 𝑥 ( .r ‘ 𝑅 ) 0 ) = 𝑋 ↔ 𝑋 = 0 ) ) |
| 20 | 8 19 | bitrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 ) ) |