This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Only zero is divisible by zero. (Contributed by Stefan O'Rear, 29-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdsr0.b | |- B = ( Base ` R ) |
|
| dvdsr0.d | |- .|| = ( ||r ` R ) |
||
| dvdsr0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | dvdsr02 | |- ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsr0.b | |- B = ( Base ` R ) |
|
| 2 | dvdsr0.d | |- .|| = ( ||r ` R ) |
|
| 3 | dvdsr0.z | |- .0. = ( 0g ` R ) |
|
| 4 | 1 3 | ring0cl | |- ( R e. Ring -> .0. e. B ) |
| 5 | 4 | adantr | |- ( ( R e. Ring /\ X e. B ) -> .0. e. B ) |
| 6 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 7 | 1 2 6 | dvdsr2 | |- ( .0. e. B -> ( .0. .|| X <-> E. x e. B ( x ( .r ` R ) .0. ) = X ) ) |
| 8 | 5 7 | syl | |- ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> E. x e. B ( x ( .r ` R ) .0. ) = X ) ) |
| 9 | 1 6 3 | ringrz | |- ( ( R e. Ring /\ x e. B ) -> ( x ( .r ` R ) .0. ) = .0. ) |
| 10 | 9 | eqeq1d | |- ( ( R e. Ring /\ x e. B ) -> ( ( x ( .r ` R ) .0. ) = X <-> .0. = X ) ) |
| 11 | eqcom | |- ( .0. = X <-> X = .0. ) |
|
| 12 | 10 11 | bitrdi | |- ( ( R e. Ring /\ x e. B ) -> ( ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) |
| 13 | 12 | rexbidva | |- ( R e. Ring -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> E. x e. B X = .0. ) ) |
| 14 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 15 | 1 | grpbn0 | |- ( R e. Grp -> B =/= (/) ) |
| 16 | r19.9rzv | |- ( B =/= (/) -> ( X = .0. <-> E. x e. B X = .0. ) ) |
|
| 17 | 14 15 16 | 3syl | |- ( R e. Ring -> ( X = .0. <-> E. x e. B X = .0. ) ) |
| 18 | 13 17 | bitr4d | |- ( R e. Ring -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) |
| 19 | 18 | adantr | |- ( ( R e. Ring /\ X e. B ) -> ( E. x e. B ( x ( .r ` R ) .0. ) = X <-> X = .0. ) ) |
| 20 | 8 19 | bitrd | |- ( ( R e. Ring /\ X e. B ) -> ( .0. .|| X <-> X = .0. ) ) |