This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a positive integer divides another integer, then the remainder upon division is zero. (Contributed by AV, 3-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmod0 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl | ⊢ ( 𝑀 ∥ 𝑁 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 3 | dvdsval3 | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ( 𝑁 mod 𝑀 ) = 0 ) ) | |
| 4 | 3 | biimpd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑁 mod 𝑀 ) = 0 ) ) |
| 5 | 4 | expcom | ⊢ ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ℕ → ( 𝑀 ∥ 𝑁 → ( 𝑁 mod 𝑀 ) = 0 ) ) ) |
| 6 | 5 | impd | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) ) |
| 8 | 2 7 | mpcom | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑀 ∥ 𝑁 ) → ( 𝑁 mod 𝑀 ) = 0 ) |