This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in ApostolNT p. 107. (Contributed by Mario Carneiro, 28-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modexp | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → 𝐶 ∈ ℕ0 ) | |
| 2 | id | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ) | |
| 3 | 2 | 3adant2l | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ 0 ) mod 𝐷 ) ) |
| 6 | oveq2 | ⊢ ( 𝑥 = 0 → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ 0 ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝑥 = 0 → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) |
| 8 | 5 7 | eqeq12d | ⊢ ( 𝑥 = 0 → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = 0 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑘 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) ) |
| 12 | oveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ 𝑘 ) ) | |
| 13 | 12 | oveq1d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) |
| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥 = 𝑘 → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑥 = 𝑘 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑘 + 1 ) ) ) | |
| 17 | 16 | oveq1d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) |
| 18 | oveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ ( 𝑘 + 1 ) ) ) | |
| 19 | 18 | oveq1d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) |
| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝐶 ) ) | |
| 23 | 22 | oveq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) ) |
| 24 | oveq2 | ⊢ ( 𝑥 = 𝐶 → ( 𝐵 ↑ 𝑥 ) = ( 𝐵 ↑ 𝐶 ) ) | |
| 25 | 24 | oveq1d | ⊢ ( 𝑥 = 𝐶 → ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑥 = 𝐶 → ( ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ↔ ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑥 = 𝐶 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑥 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑥 ) mod 𝐷 ) ) ↔ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) ) ) |
| 28 | zcn | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) | |
| 29 | exp0 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 0 ) = 1 ) | |
| 30 | 28 29 | syl | ⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 0 ) = 1 ) |
| 31 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 32 | exp0 | ⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ↑ 0 ) = 1 ) | |
| 33 | 31 32 | syl | ⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 0 ) = 1 ) |
| 34 | 33 | eqcomd | ⊢ ( 𝐵 ∈ ℤ → 1 = ( 𝐵 ↑ 0 ) ) |
| 35 | 30 34 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ↑ 0 ) = ( 𝐵 ↑ 0 ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) |
| 37 | 36 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 0 ) mod 𝐷 ) = ( ( 𝐵 ↑ 0 ) mod 𝐷 ) ) |
| 38 | simp21l | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐴 ∈ ℤ ) | |
| 39 | simp1 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝑘 ∈ ℕ0 ) | |
| 40 | zexpcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) | |
| 41 | 38 39 40 | syl2anc | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℤ ) |
| 42 | simp21r | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐵 ∈ ℤ ) | |
| 43 | zexpcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑘 ) ∈ ℤ ) | |
| 44 | 42 39 43 | syl2anc | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐵 ↑ 𝑘 ) ∈ ℤ ) |
| 45 | simp22 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐷 ∈ ℝ+ ) | |
| 46 | simp3 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) | |
| 47 | simp23 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) | |
| 48 | 41 44 38 42 45 46 47 | modmul12d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) mod 𝐷 ) = ( ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) mod 𝐷 ) ) |
| 49 | 38 | zcnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐴 ∈ ℂ ) |
| 50 | expp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) | |
| 51 | 49 39 50 | syl2anc | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐴 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) ) |
| 52 | 51 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( ( 𝐴 ↑ 𝑘 ) · 𝐴 ) mod 𝐷 ) ) |
| 53 | 42 | zcnd | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → 𝐵 ∈ ℂ ) |
| 54 | expp1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) | |
| 55 | 53 39 54 | syl2anc | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( 𝐵 ↑ ( 𝑘 + 1 ) ) = ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) ) |
| 56 | 55 | oveq1d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( ( 𝐵 ↑ 𝑘 ) · 𝐵 ) mod 𝐷 ) ) |
| 57 | 48 52 56 | 3eqtr4d | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) ∧ ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) |
| 58 | 57 | 3exp | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) ) |
| 59 | 58 | a2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝑘 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝑘 ) mod 𝐷 ) ) → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) = ( ( 𝐵 ↑ ( 𝑘 + 1 ) ) mod 𝐷 ) ) ) ) |
| 60 | 9 15 21 27 37 59 | nn0ind | ⊢ ( 𝐶 ∈ ℕ0 → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐷 ∈ ℝ+ ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) ) |
| 61 | 1 3 60 | sylc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝐷 ) = ( 𝐵 mod 𝐷 ) ) → ( ( 𝐴 ↑ 𝐶 ) mod 𝐷 ) = ( ( 𝐵 ↑ 𝐶 ) mod 𝐷 ) ) |