This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmn0cl and dvdslcm . (Contributed by Steve Rodriguez, 20-Jan-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmcllem | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmn0val | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) | |
| 2 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ℕ | |
| 3 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 4 | 2 3 | sseqtri | ⊢ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) |
| 5 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 7 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 8 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 9 | 7 8 | anim12i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
| 10 | ioran | ⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) | |
| 11 | df-ne | ⊢ ( 𝑀 ≠ 0 ↔ ¬ 𝑀 = 0 ) | |
| 12 | df-ne | ⊢ ( 𝑁 ≠ 0 ↔ ¬ 𝑁 = 0 ) | |
| 13 | 11 12 | anbi12i | ⊢ ( ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ↔ ( ¬ 𝑀 = 0 ∧ ¬ 𝑁 = 0 ) ) |
| 14 | 10 13 | sylbb2 | ⊢ ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) → ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ) |
| 15 | mulne0 | ⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ∧ ( 𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) | |
| 16 | 15 | an4s | ⊢ ( ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) ∧ ( 𝑀 ≠ 0 ∧ 𝑁 ≠ 0 ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 17 | 9 14 16 | syl2an | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 18 | nnabscl | ⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ≠ 0 ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ) | |
| 19 | 6 17 18 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ) |
| 20 | dvdsmul1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( 𝑀 · 𝑁 ) ) | |
| 21 | dvdsabsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) | |
| 22 | 5 21 | syldan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
| 23 | 20 22 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 24 | dvdsmul2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) | |
| 25 | dvdsabsb | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) | |
| 26 | 5 25 | sylan2 | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
| 27 | 26 | anabss7 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 · 𝑁 ) ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
| 28 | 24 27 | mpbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 29 | 23 28 | jca | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
| 31 | breq2 | ⊢ ( 𝑛 = ( abs ‘ ( 𝑀 · 𝑁 ) ) → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) | |
| 32 | breq2 | ⊢ ( 𝑛 = ( abs ‘ ( 𝑀 · 𝑁 ) ) → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) | |
| 33 | 31 32 | anbi12d | ⊢ ( 𝑛 = ( abs ‘ ( 𝑀 · 𝑁 ) ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ) |
| 34 | 33 | rspcev | ⊢ ( ( ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ∧ ( 𝑀 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∧ 𝑁 ∥ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ∃ 𝑛 ∈ ℕ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
| 35 | 19 30 34 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ∃ 𝑛 ∈ ℕ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) |
| 36 | rabn0 | ⊢ ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) | |
| 37 | 35 36 | sylibr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ≠ ∅ ) |
| 38 | infssuzcl | ⊢ ( ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) | |
| 39 | 4 37 38 | sylancr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
| 40 | 1 39 | eqeltrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |