This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b only requiring B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsaddre2b | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsadd2b | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) | |
| 2 | 1 | a1d | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐵 ∈ ℝ → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) ) |
| 3 | 2 | 3exp | ⊢ ( 𝐴 ∈ ℤ → ( 𝐵 ∈ ℤ → ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) → ( 𝐵 ∈ ℝ → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) ) ) ) |
| 4 | 3 | com24 | ⊢ ( 𝐴 ∈ ℤ → ( 𝐵 ∈ ℝ → ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) → ( 𝐵 ∈ ℤ → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) ) ) ) |
| 5 | 4 | 3imp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐵 ∈ ℤ → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) ) |
| 6 | 5 | com12 | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) ) |
| 7 | dvdszrcl | ⊢ ( 𝐴 ∥ 𝐵 → ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) | |
| 8 | pm2.24 | ⊢ ( 𝐵 ∈ ℤ → ( ¬ 𝐵 ∈ ℤ → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) | |
| 9 | 7 8 | simpl2im | ⊢ ( 𝐴 ∥ 𝐵 → ( ¬ 𝐵 ∈ ℤ → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 10 | 9 | com12 | ⊢ ( ¬ 𝐵 ∈ ℤ → ( 𝐴 ∥ 𝐵 → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( ¬ 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ) → ( 𝐴 ∥ 𝐵 → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 12 | dvdszrcl | ⊢ ( 𝐴 ∥ ( 𝐶 + 𝐵 ) → ( 𝐴 ∈ ℤ ∧ ( 𝐶 + 𝐵 ) ∈ ℤ ) ) | |
| 13 | zcn | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) | |
| 14 | 13 | adantr | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) ) → 𝐶 ∈ ℂ ) |
| 15 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
| 17 | 14 16 | addcomd | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) ) → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 18 | eldif | ⊢ ( 𝐵 ∈ ( ℝ ∖ ℤ ) ↔ ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) ) | |
| 19 | nzadd | ⊢ ( ( 𝐵 ∈ ( ℝ ∖ ℤ ) ∧ 𝐶 ∈ ℤ ) → ( 𝐵 + 𝐶 ) ∈ ( ℝ ∖ ℤ ) ) | |
| 20 | 19 | eldifbd | ⊢ ( ( 𝐵 ∈ ( ℝ ∖ ℤ ) ∧ 𝐶 ∈ ℤ ) → ¬ ( 𝐵 + 𝐶 ) ∈ ℤ ) |
| 21 | 20 | expcom | ⊢ ( 𝐶 ∈ ℤ → ( 𝐵 ∈ ( ℝ ∖ ℤ ) → ¬ ( 𝐵 + 𝐶 ) ∈ ℤ ) ) |
| 22 | 18 21 | biimtrrid | ⊢ ( 𝐶 ∈ ℤ → ( ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) → ¬ ( 𝐵 + 𝐶 ) ∈ ℤ ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) ) → ¬ ( 𝐵 + 𝐶 ) ∈ ℤ ) |
| 24 | 17 23 | eqneltrd | ⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝐵 ∈ ℝ ∧ ¬ 𝐵 ∈ ℤ ) ) → ¬ ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 25 | 24 | exp32 | ⊢ ( 𝐶 ∈ ℤ → ( 𝐵 ∈ ℝ → ( ¬ 𝐵 ∈ ℤ → ¬ ( 𝐶 + 𝐵 ) ∈ ℤ ) ) ) |
| 26 | pm2.21 | ⊢ ( ¬ ( 𝐶 + 𝐵 ) ∈ ℤ → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) | |
| 27 | 25 26 | syl8 | ⊢ ( 𝐶 ∈ ℤ → ( 𝐵 ∈ ℝ → ( ¬ 𝐵 ∈ ℤ → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) → ( 𝐵 ∈ ℝ → ( ¬ 𝐵 ∈ ℤ → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) ) ) |
| 29 | 28 | com12 | ⊢ ( 𝐵 ∈ ℝ → ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) → ( ¬ 𝐵 ∈ ℤ → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) ) ) |
| 30 | 29 | a1i | ⊢ ( 𝐴 ∈ ℤ → ( 𝐵 ∈ ℝ → ( ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) → ( ¬ 𝐵 ∈ ℤ → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) ) ) ) |
| 31 | 30 | 3imp | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( ¬ 𝐵 ∈ ℤ → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) ) |
| 32 | 31 | impcom | ⊢ ( ( ¬ 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ) → ( ( 𝐶 + 𝐵 ) ∈ ℤ → 𝐴 ∥ 𝐵 ) ) |
| 33 | 32 | com12 | ⊢ ( ( 𝐶 + 𝐵 ) ∈ ℤ → ( ( ¬ 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ) → 𝐴 ∥ 𝐵 ) ) |
| 34 | 12 33 | simpl2im | ⊢ ( 𝐴 ∥ ( 𝐶 + 𝐵 ) → ( ( ¬ 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ) → 𝐴 ∥ 𝐵 ) ) |
| 35 | 34 | com12 | ⊢ ( ( ¬ 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ) → ( 𝐴 ∥ ( 𝐶 + 𝐵 ) → 𝐴 ∥ 𝐵 ) ) |
| 36 | 11 35 | impbid | ⊢ ( ( ¬ 𝐵 ∈ ℤ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |
| 37 | 36 | ex | ⊢ ( ¬ 𝐵 ∈ ℤ → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) ) |
| 38 | 6 37 | pm2.61i | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |