This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a multiple of the base does not affect divisibility. (Contributed by Stefan O'Rear, 23-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsadd2b | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∈ ℤ ) | |
| 2 | simpl3l | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐶 ∈ ℤ ) | |
| 3 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐵 ∈ ℤ ) | |
| 4 | simpl3r | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ 𝐶 ) | |
| 5 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ 𝐵 ) | |
| 6 | 1 2 3 4 5 | dvds2addd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ 𝐵 ) → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) |
| 7 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∈ ℤ ) | |
| 8 | simp3l | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → 𝐶 ∈ ℤ ) | |
| 9 | simp2 | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → 𝐵 ∈ ℤ ) | |
| 10 | zaddcl | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 13 | 8 | znegcld | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → - 𝐶 ∈ ℤ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → - 𝐶 ∈ ℤ ) |
| 15 | simpr | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ ( 𝐶 + 𝐵 ) ) | |
| 16 | simpl3r | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ 𝐶 ) | |
| 17 | simpl3l | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐶 ∈ ℤ ) | |
| 18 | dvdsnegb | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ 𝐶 ↔ 𝐴 ∥ - 𝐶 ) ) | |
| 19 | 7 17 18 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → ( 𝐴 ∥ 𝐶 ↔ 𝐴 ∥ - 𝐶 ) ) |
| 20 | 16 19 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ - 𝐶 ) |
| 21 | 7 12 14 15 20 | dvds2addd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ ( ( 𝐶 + 𝐵 ) + - 𝐶 ) ) |
| 22 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐵 ∈ ℤ ) | |
| 23 | 10 | ancoms | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐶 + 𝐵 ) ∈ ℤ ) |
| 24 | 23 | zcnd | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐶 + 𝐵 ) ∈ ℂ ) |
| 25 | zcn | ⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
| 27 | 24 26 | negsubd | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 + 𝐵 ) + - 𝐶 ) = ( ( 𝐶 + 𝐵 ) − 𝐶 ) ) |
| 28 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 30 | 26 29 | pncan2d | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 + 𝐵 ) − 𝐶 ) = 𝐵 ) |
| 31 | 27 30 | eqtrd | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐶 + 𝐵 ) + - 𝐶 ) = 𝐵 ) |
| 32 | 22 17 31 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → ( ( 𝐶 + 𝐵 ) + - 𝐶 ) = 𝐵 ) |
| 33 | 21 32 | breqtrd | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) ∧ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) → 𝐴 ∥ 𝐵 ) |
| 34 | 6 33 | impbida | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ 𝐶 ) ) → ( 𝐴 ∥ 𝐵 ↔ 𝐴 ∥ ( 𝐶 + 𝐵 ) ) ) |