This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding a multiple of the base does not affect divisibility. Variant of dvdsadd2b only requiring B to be a real number (not necessarily an integer). (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsaddre2b | |- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsadd2b | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |
|
| 2 | 1 | a1d | |- ( ( A e. ZZ /\ B e. ZZ /\ ( C e. ZZ /\ A || C ) ) -> ( B e. RR -> ( A || B <-> A || ( C + B ) ) ) ) |
| 3 | 2 | 3exp | |- ( A e. ZZ -> ( B e. ZZ -> ( ( C e. ZZ /\ A || C ) -> ( B e. RR -> ( A || B <-> A || ( C + B ) ) ) ) ) ) |
| 4 | 3 | com24 | |- ( A e. ZZ -> ( B e. RR -> ( ( C e. ZZ /\ A || C ) -> ( B e. ZZ -> ( A || B <-> A || ( C + B ) ) ) ) ) ) |
| 5 | 4 | 3imp | |- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( B e. ZZ -> ( A || B <-> A || ( C + B ) ) ) ) |
| 6 | 5 | com12 | |- ( B e. ZZ -> ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) ) |
| 7 | dvdszrcl | |- ( A || B -> ( A e. ZZ /\ B e. ZZ ) ) |
|
| 8 | pm2.24 | |- ( B e. ZZ -> ( -. B e. ZZ -> A || ( C + B ) ) ) |
|
| 9 | 7 8 | simpl2im | |- ( A || B -> ( -. B e. ZZ -> A || ( C + B ) ) ) |
| 10 | 9 | com12 | |- ( -. B e. ZZ -> ( A || B -> A || ( C + B ) ) ) |
| 11 | 10 | adantr | |- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( A || B -> A || ( C + B ) ) ) |
| 12 | dvdszrcl | |- ( A || ( C + B ) -> ( A e. ZZ /\ ( C + B ) e. ZZ ) ) |
|
| 13 | zcn | |- ( C e. ZZ -> C e. CC ) |
|
| 14 | 13 | adantr | |- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> C e. CC ) |
| 15 | recn | |- ( B e. RR -> B e. CC ) |
|
| 16 | 15 | ad2antrl | |- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> B e. CC ) |
| 17 | 14 16 | addcomd | |- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> ( C + B ) = ( B + C ) ) |
| 18 | eldif | |- ( B e. ( RR \ ZZ ) <-> ( B e. RR /\ -. B e. ZZ ) ) |
|
| 19 | nzadd | |- ( ( B e. ( RR \ ZZ ) /\ C e. ZZ ) -> ( B + C ) e. ( RR \ ZZ ) ) |
|
| 20 | 19 | eldifbd | |- ( ( B e. ( RR \ ZZ ) /\ C e. ZZ ) -> -. ( B + C ) e. ZZ ) |
| 21 | 20 | expcom | |- ( C e. ZZ -> ( B e. ( RR \ ZZ ) -> -. ( B + C ) e. ZZ ) ) |
| 22 | 18 21 | biimtrrid | |- ( C e. ZZ -> ( ( B e. RR /\ -. B e. ZZ ) -> -. ( B + C ) e. ZZ ) ) |
| 23 | 22 | imp | |- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> -. ( B + C ) e. ZZ ) |
| 24 | 17 23 | eqneltrd | |- ( ( C e. ZZ /\ ( B e. RR /\ -. B e. ZZ ) ) -> -. ( C + B ) e. ZZ ) |
| 25 | 24 | exp32 | |- ( C e. ZZ -> ( B e. RR -> ( -. B e. ZZ -> -. ( C + B ) e. ZZ ) ) ) |
| 26 | pm2.21 | |- ( -. ( C + B ) e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) |
|
| 27 | 25 26 | syl8 | |- ( C e. ZZ -> ( B e. RR -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) |
| 28 | 27 | adantr | |- ( ( C e. ZZ /\ A || C ) -> ( B e. RR -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) |
| 29 | 28 | com12 | |- ( B e. RR -> ( ( C e. ZZ /\ A || C ) -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) |
| 30 | 29 | a1i | |- ( A e. ZZ -> ( B e. RR -> ( ( C e. ZZ /\ A || C ) -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) ) ) |
| 31 | 30 | 3imp | |- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( -. B e. ZZ -> ( ( C + B ) e. ZZ -> A || B ) ) ) |
| 32 | 31 | impcom | |- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( ( C + B ) e. ZZ -> A || B ) ) |
| 33 | 32 | com12 | |- ( ( C + B ) e. ZZ -> ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> A || B ) ) |
| 34 | 12 33 | simpl2im | |- ( A || ( C + B ) -> ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> A || B ) ) |
| 35 | 34 | com12 | |- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( A || ( C + B ) -> A || B ) ) |
| 36 | 11 35 | impbid | |- ( ( -. B e. ZZ /\ ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) ) -> ( A || B <-> A || ( C + B ) ) ) |
| 37 | 36 | ex | |- ( -. B e. ZZ -> ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) ) |
| 38 | 6 37 | pm2.61i | |- ( ( A e. ZZ /\ B e. RR /\ ( C e. ZZ /\ A || C ) ) -> ( A || B <-> A || ( C + B ) ) ) |