This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of a real number not being an integer and an integer is not an integer. (Contributed by AV, 19-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nzadd | ⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝐴 ∈ ( ℝ ∖ ℤ ) ↔ ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ) | |
| 2 | zre | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℝ ) | |
| 3 | readdcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) | |
| 4 | 2 3 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 5 | 4 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 6 | zsubcl | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ) | |
| 7 | 6 | expcom | ⊢ ( 𝐵 ∈ ℤ → ( ( 𝐴 + 𝐵 ) ∈ ℤ → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ) ) |
| 9 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 10 | zcn | ⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) | |
| 11 | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) | |
| 12 | 9 10 11 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 13 | 12 | eleq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℤ ↔ 𝐴 ∈ ℤ ) ) |
| 14 | 8 13 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℤ → 𝐴 ∈ ℤ ) ) |
| 15 | 14 | con3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ¬ 𝐴 ∈ ℤ → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
| 16 | 15 | ex | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℤ → ( ¬ 𝐴 ∈ ℤ → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) ) |
| 17 | 16 | com23 | ⊢ ( 𝐴 ∈ ℝ → ( ¬ 𝐴 ∈ ℤ → ( 𝐵 ∈ ℤ → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) ) |
| 18 | 17 | imp31 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ∧ 𝐵 ∈ ℤ ) → ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) |
| 19 | 5 18 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
| 20 | 1 19 | sylanb | ⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) |
| 21 | eldif | ⊢ ( ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℤ ) ↔ ( ( 𝐴 + 𝐵 ) ∈ ℝ ∧ ¬ ( 𝐴 + 𝐵 ) ∈ ℤ ) ) | |
| 22 | 20 21 | sylibr | ⊢ ( ( 𝐴 ∈ ( ℝ ∖ ℤ ) ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ( ℝ ∖ ℤ ) ) |