This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdivbd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvdivbd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvdivbd.adv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) | ||
| dvdivbd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) | ||
| dvdivbd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) | ||
| dvdivbd.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | ||
| dvdivbd.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) | ||
| dvdivbd.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | ||
| dvdivbd.q | ⊢ ( 𝜑 → 𝑄 ∈ ℝ ) | ||
| dvdivbd.cbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐶 ) ≤ 𝑈 ) | ||
| dvdivbd.bbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) | ||
| dvdivbd.dbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐷 ) ≤ 𝑇 ) | ||
| dvdivbd.abd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ≤ 𝑄 ) | ||
| dvdivbd.bdv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | ||
| dvdivbd.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) | ||
| dvdivbd.e | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | ||
| dvdivbd.ele | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐸 ≤ ( abs ‘ 𝐵 ) ) | ||
| dvdivbd.f | ⊢ 𝐹 = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) | ||
| Assertion | dvdivbd | ⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivbd.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvdivbd.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvdivbd.adv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) | |
| 4 | dvdivbd.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) | |
| 5 | dvdivbd.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) | |
| 6 | dvdivbd.u | ⊢ ( 𝜑 → 𝑈 ∈ ℝ ) | |
| 7 | dvdivbd.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) | |
| 8 | dvdivbd.t | ⊢ ( 𝜑 → 𝑇 ∈ ℝ ) | |
| 9 | dvdivbd.q | ⊢ ( 𝜑 → 𝑄 ∈ ℝ ) | |
| 10 | dvdivbd.cbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐶 ) ≤ 𝑈 ) | |
| 11 | dvdivbd.bbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) | |
| 12 | dvdivbd.dbd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐷 ) ≤ 𝑇 ) | |
| 13 | dvdivbd.abd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ≤ 𝑄 ) | |
| 14 | dvdivbd.bdv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | |
| 15 | dvdivbd.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) | |
| 16 | dvdivbd.e | ⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) | |
| 17 | dvdivbd.ele | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐸 ≤ ( abs ‘ 𝐵 ) ) | |
| 18 | dvdivbd.f | ⊢ 𝐹 = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) | |
| 19 | 6 7 | remulcld | ⊢ ( 𝜑 → ( 𝑈 · 𝑅 ) ∈ ℝ ) |
| 20 | 8 9 | remulcld | ⊢ ( 𝜑 → ( 𝑇 · 𝑄 ) ∈ ℝ ) |
| 21 | 19 20 | readdcld | ⊢ ( 𝜑 → ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ∈ ℝ ) |
| 22 | 16 | rpred | ⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 23 | 22 | resqcld | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ∈ ℝ ) |
| 24 | 16 | rpcnd | ⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 25 | 16 | rpgt0d | ⊢ ( 𝜑 → 0 < 𝐸 ) |
| 26 | 25 | gt0ne0d | ⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
| 27 | 2z | ⊢ 2 ∈ ℤ | |
| 28 | 27 | a1i | ⊢ ( 𝜑 → 2 ∈ ℤ ) |
| 29 | 24 26 28 | expne0d | ⊢ ( 𝜑 → ( 𝐸 ↑ 2 ) ≠ 0 ) |
| 30 | 21 23 29 | redivcld | ⊢ ( 𝜑 → ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ∈ ℝ ) |
| 31 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → 𝐵 = 0 ) | |
| 32 | 31 | abs00bd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → ( abs ‘ 𝐵 ) = 0 ) |
| 33 | 0red | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ∈ ℝ ) | |
| 34 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ℝ ) |
| 35 | 5 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 36 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 < 𝐸 ) |
| 37 | 17 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ≤ ( abs ‘ 𝐵 ) ) |
| 38 | 33 34 35 36 37 | ltletrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 < ( abs ‘ 𝐵 ) ) |
| 39 | 38 | gt0ne0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐵 ) ≠ 0 ) |
| 40 | 39 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → ( abs ‘ 𝐵 ) ≠ 0 ) |
| 41 | 40 | neneqd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝐵 = 0 ) → ¬ ( abs ‘ 𝐵 ) = 0 ) |
| 42 | 32 41 | pm2.65da | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝐵 = 0 ) |
| 43 | 42 | neqned | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ≠ 0 ) |
| 44 | eldifsn | ⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) | |
| 45 | 5 43 44 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( ℂ ∖ { 0 } ) ) |
| 46 | 1 2 4 3 45 15 14 | dvmptdiv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐵 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 47 | 18 46 | eqtrid | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 48 | 4 5 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 · 𝐵 ) ∈ ℂ ) |
| 49 | 15 2 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 50 | 48 49 | subcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ∈ ℂ ) |
| 51 | 5 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
| 52 | sqne0 | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) ≠ 0 ↔ 𝐵 ≠ 0 ) ) | |
| 53 | 5 52 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 ↑ 2 ) ≠ 0 ↔ 𝐵 ≠ 0 ) ) |
| 54 | 43 53 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 ↑ 2 ) ≠ 0 ) |
| 55 | 50 51 54 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
| 56 | 47 55 | fvmpt2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) |
| 57 | 56 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) = ( abs ‘ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ) |
| 58 | 50 51 54 | absdivd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) = ( ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) / ( abs ‘ ( 𝐵 ↑ 2 ) ) ) ) |
| 59 | 50 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ∈ ℝ ) |
| 60 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ∈ ℝ ) |
| 61 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐸 ∈ ℝ+ ) |
| 62 | 27 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℤ ) |
| 63 | 61 62 | rpexpcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ↑ 2 ) ∈ ℝ+ ) |
| 64 | 51 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) ∈ ℝ ) |
| 65 | 50 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ) |
| 66 | 48 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ∈ ℝ ) |
| 67 | 49 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐷 · 𝐴 ) ) ∈ ℝ ) |
| 68 | 66 67 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( 𝐶 · 𝐵 ) ) + ( abs ‘ ( 𝐷 · 𝐴 ) ) ) ∈ ℝ ) |
| 69 | 48 49 | abs2dif2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ≤ ( ( abs ‘ ( 𝐶 · 𝐵 ) ) + ( abs ‘ ( 𝐷 · 𝐴 ) ) ) ) |
| 70 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑈 · 𝑅 ) ∈ ℝ ) |
| 71 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 · 𝑄 ) ∈ ℝ ) |
| 72 | 4 5 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) = ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) ) |
| 73 | 4 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐶 ) ∈ ℝ ) |
| 74 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑈 ∈ ℝ ) |
| 75 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑅 ∈ ℝ ) |
| 76 | 4 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐶 ) ) |
| 77 | 5 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 78 | 73 74 35 75 76 77 10 11 | lemul12ad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝐶 ) · ( abs ‘ 𝐵 ) ) ≤ ( 𝑈 · 𝑅 ) ) |
| 79 | 72 78 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐶 · 𝐵 ) ) ≤ ( 𝑈 · 𝑅 ) ) |
| 80 | 15 2 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐷 · 𝐴 ) ) = ( ( abs ‘ 𝐷 ) · ( abs ‘ 𝐴 ) ) ) |
| 81 | 15 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐷 ) ∈ ℝ ) |
| 82 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑇 ∈ ℝ ) |
| 83 | 2 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 84 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑄 ∈ ℝ ) |
| 85 | 15 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐷 ) ) |
| 86 | 2 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 87 | 81 82 83 84 85 86 12 13 | lemul12ad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ 𝐷 ) · ( abs ‘ 𝐴 ) ) ≤ ( 𝑇 · 𝑄 ) ) |
| 88 | 80 87 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐷 · 𝐴 ) ) ≤ ( 𝑇 · 𝑄 ) ) |
| 89 | 66 67 70 71 79 88 | le2addd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( 𝐶 · 𝐵 ) ) + ( abs ‘ ( 𝐷 · 𝐴 ) ) ) ≤ ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ) |
| 90 | 59 68 60 69 89 | letrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) ≤ ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) ) |
| 91 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 92 | 91 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 2 ∈ ℕ0 ) |
| 93 | 33 34 36 | ltled | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ 𝐸 ) |
| 94 | leexp1a | ⊢ ( ( ( 𝐸 ∈ ℝ ∧ ( abs ‘ 𝐵 ) ∈ ℝ ∧ 2 ∈ ℕ0 ) ∧ ( 0 ≤ 𝐸 ∧ 𝐸 ≤ ( abs ‘ 𝐵 ) ) ) → ( 𝐸 ↑ 2 ) ≤ ( ( abs ‘ 𝐵 ) ↑ 2 ) ) | |
| 95 | 34 35 92 93 37 94 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ↑ 2 ) ≤ ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 96 | 5 92 | absexpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐵 ↑ 2 ) ) = ( ( abs ‘ 𝐵 ) ↑ 2 ) ) |
| 97 | 95 96 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐸 ↑ 2 ) ≤ ( abs ‘ ( 𝐵 ↑ 2 ) ) ) |
| 98 | 59 60 63 64 65 90 97 | lediv12ad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( abs ‘ ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) ) / ( abs ‘ ( 𝐵 ↑ 2 ) ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 99 | 58 98 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( ( ( 𝐶 · 𝐵 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐵 ↑ 2 ) ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 100 | 57 99 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 101 | 100 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) |
| 102 | brralrspcev | ⊢ ( ( ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( ( ( 𝑈 · 𝑅 ) + ( 𝑇 · 𝑄 ) ) / ( 𝐸 ↑ 2 ) ) ) → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) | |
| 103 | 30 101 102 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑏 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑏 ) |