This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of ratio of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltmul1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltmul1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltmul1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| lediv12ad.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | ||
| lediv12ad.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| lediv12ad.6 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| lediv12ad.7 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) | ||
| Assertion | lediv12ad | ⊢ ( 𝜑 → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltmul1d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltmul1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | lediv12ad.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℝ ) | |
| 5 | lediv12ad.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 6 | lediv12ad.6 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 7 | lediv12ad.7 | ⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) | |
| 8 | 1 2 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 9 | 5 6 | jca | ⊢ ( 𝜑 → ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
| 10 | 3 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 | 10 4 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ) |
| 12 | 3 | rpgt0d | ⊢ ( 𝜑 → 0 < 𝐶 ) |
| 13 | 12 7 | jca | ⊢ ( 𝜑 → ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) |
| 14 | lediv12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) | |
| 15 | 8 9 11 13 14 | syl22anc | ⊢ ( 𝜑 → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) |