This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative to be bounded, for the quotient of two functions. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdivbd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvdivbd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvdivbd.adv | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> C ) ) |
||
| dvdivbd.c | |- ( ( ph /\ x e. X ) -> C e. CC ) |
||
| dvdivbd.b | |- ( ( ph /\ x e. X ) -> B e. CC ) |
||
| dvdivbd.u | |- ( ph -> U e. RR ) |
||
| dvdivbd.r | |- ( ph -> R e. RR ) |
||
| dvdivbd.t | |- ( ph -> T e. RR ) |
||
| dvdivbd.q | |- ( ph -> Q e. RR ) |
||
| dvdivbd.cbd | |- ( ( ph /\ x e. X ) -> ( abs ` C ) <_ U ) |
||
| dvdivbd.bbd | |- ( ( ph /\ x e. X ) -> ( abs ` B ) <_ R ) |
||
| dvdivbd.dbd | |- ( ( ph /\ x e. X ) -> ( abs ` D ) <_ T ) |
||
| dvdivbd.abd | |- ( ( ph /\ x e. X ) -> ( abs ` A ) <_ Q ) |
||
| dvdivbd.bdv | |- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> D ) ) |
||
| dvdivbd.d | |- ( ( ph /\ x e. X ) -> D e. CC ) |
||
| dvdivbd.e | |- ( ph -> E e. RR+ ) |
||
| dvdivbd.ele | |- ( ph -> A. x e. X E <_ ( abs ` B ) ) |
||
| dvdivbd.f | |- F = ( S _D ( x e. X |-> ( A / B ) ) ) |
||
| Assertion | dvdivbd | |- ( ph -> E. b e. RR A. x e. X ( abs ` ( F ` x ) ) <_ b ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdivbd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvdivbd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvdivbd.adv | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> C ) ) |
|
| 4 | dvdivbd.c | |- ( ( ph /\ x e. X ) -> C e. CC ) |
|
| 5 | dvdivbd.b | |- ( ( ph /\ x e. X ) -> B e. CC ) |
|
| 6 | dvdivbd.u | |- ( ph -> U e. RR ) |
|
| 7 | dvdivbd.r | |- ( ph -> R e. RR ) |
|
| 8 | dvdivbd.t | |- ( ph -> T e. RR ) |
|
| 9 | dvdivbd.q | |- ( ph -> Q e. RR ) |
|
| 10 | dvdivbd.cbd | |- ( ( ph /\ x e. X ) -> ( abs ` C ) <_ U ) |
|
| 11 | dvdivbd.bbd | |- ( ( ph /\ x e. X ) -> ( abs ` B ) <_ R ) |
|
| 12 | dvdivbd.dbd | |- ( ( ph /\ x e. X ) -> ( abs ` D ) <_ T ) |
|
| 13 | dvdivbd.abd | |- ( ( ph /\ x e. X ) -> ( abs ` A ) <_ Q ) |
|
| 14 | dvdivbd.bdv | |- ( ph -> ( S _D ( x e. X |-> B ) ) = ( x e. X |-> D ) ) |
|
| 15 | dvdivbd.d | |- ( ( ph /\ x e. X ) -> D e. CC ) |
|
| 16 | dvdivbd.e | |- ( ph -> E e. RR+ ) |
|
| 17 | dvdivbd.ele | |- ( ph -> A. x e. X E <_ ( abs ` B ) ) |
|
| 18 | dvdivbd.f | |- F = ( S _D ( x e. X |-> ( A / B ) ) ) |
|
| 19 | 6 7 | remulcld | |- ( ph -> ( U x. R ) e. RR ) |
| 20 | 8 9 | remulcld | |- ( ph -> ( T x. Q ) e. RR ) |
| 21 | 19 20 | readdcld | |- ( ph -> ( ( U x. R ) + ( T x. Q ) ) e. RR ) |
| 22 | 16 | rpred | |- ( ph -> E e. RR ) |
| 23 | 22 | resqcld | |- ( ph -> ( E ^ 2 ) e. RR ) |
| 24 | 16 | rpcnd | |- ( ph -> E e. CC ) |
| 25 | 16 | rpgt0d | |- ( ph -> 0 < E ) |
| 26 | 25 | gt0ne0d | |- ( ph -> E =/= 0 ) |
| 27 | 2z | |- 2 e. ZZ |
|
| 28 | 27 | a1i | |- ( ph -> 2 e. ZZ ) |
| 29 | 24 26 28 | expne0d | |- ( ph -> ( E ^ 2 ) =/= 0 ) |
| 30 | 21 23 29 | redivcld | |- ( ph -> ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) e. RR ) |
| 31 | simpr | |- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> B = 0 ) |
|
| 32 | 31 | abs00bd | |- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> ( abs ` B ) = 0 ) |
| 33 | 0red | |- ( ( ph /\ x e. X ) -> 0 e. RR ) |
|
| 34 | 22 | adantr | |- ( ( ph /\ x e. X ) -> E e. RR ) |
| 35 | 5 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` B ) e. RR ) |
| 36 | 25 | adantr | |- ( ( ph /\ x e. X ) -> 0 < E ) |
| 37 | 17 | r19.21bi | |- ( ( ph /\ x e. X ) -> E <_ ( abs ` B ) ) |
| 38 | 33 34 35 36 37 | ltletrd | |- ( ( ph /\ x e. X ) -> 0 < ( abs ` B ) ) |
| 39 | 38 | gt0ne0d | |- ( ( ph /\ x e. X ) -> ( abs ` B ) =/= 0 ) |
| 40 | 39 | adantr | |- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> ( abs ` B ) =/= 0 ) |
| 41 | 40 | neneqd | |- ( ( ( ph /\ x e. X ) /\ B = 0 ) -> -. ( abs ` B ) = 0 ) |
| 42 | 32 41 | pm2.65da | |- ( ( ph /\ x e. X ) -> -. B = 0 ) |
| 43 | 42 | neqned | |- ( ( ph /\ x e. X ) -> B =/= 0 ) |
| 44 | eldifsn | |- ( B e. ( CC \ { 0 } ) <-> ( B e. CC /\ B =/= 0 ) ) |
|
| 45 | 5 43 44 | sylanbrc | |- ( ( ph /\ x e. X ) -> B e. ( CC \ { 0 } ) ) |
| 46 | 1 2 4 3 45 15 14 | dvmptdiv | |- ( ph -> ( S _D ( x e. X |-> ( A / B ) ) ) = ( x e. X |-> ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) ) |
| 47 | 18 46 | eqtrid | |- ( ph -> F = ( x e. X |-> ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) ) |
| 48 | 4 5 | mulcld | |- ( ( ph /\ x e. X ) -> ( C x. B ) e. CC ) |
| 49 | 15 2 | mulcld | |- ( ( ph /\ x e. X ) -> ( D x. A ) e. CC ) |
| 50 | 48 49 | subcld | |- ( ( ph /\ x e. X ) -> ( ( C x. B ) - ( D x. A ) ) e. CC ) |
| 51 | 5 | sqcld | |- ( ( ph /\ x e. X ) -> ( B ^ 2 ) e. CC ) |
| 52 | sqne0 | |- ( B e. CC -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) ) |
|
| 53 | 5 52 | syl | |- ( ( ph /\ x e. X ) -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) ) |
| 54 | 43 53 | mpbird | |- ( ( ph /\ x e. X ) -> ( B ^ 2 ) =/= 0 ) |
| 55 | 50 51 54 | divcld | |- ( ( ph /\ x e. X ) -> ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) e. CC ) |
| 56 | 47 55 | fvmpt2d | |- ( ( ph /\ x e. X ) -> ( F ` x ) = ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) |
| 57 | 56 | fveq2d | |- ( ( ph /\ x e. X ) -> ( abs ` ( F ` x ) ) = ( abs ` ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) ) |
| 58 | 50 51 54 | absdivd | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) = ( ( abs ` ( ( C x. B ) - ( D x. A ) ) ) / ( abs ` ( B ^ 2 ) ) ) ) |
| 59 | 50 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( C x. B ) - ( D x. A ) ) ) e. RR ) |
| 60 | 21 | adantr | |- ( ( ph /\ x e. X ) -> ( ( U x. R ) + ( T x. Q ) ) e. RR ) |
| 61 | 16 | adantr | |- ( ( ph /\ x e. X ) -> E e. RR+ ) |
| 62 | 27 | a1i | |- ( ( ph /\ x e. X ) -> 2 e. ZZ ) |
| 63 | 61 62 | rpexpcld | |- ( ( ph /\ x e. X ) -> ( E ^ 2 ) e. RR+ ) |
| 64 | 51 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` ( B ^ 2 ) ) e. RR ) |
| 65 | 50 | absge0d | |- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` ( ( C x. B ) - ( D x. A ) ) ) ) |
| 66 | 48 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` ( C x. B ) ) e. RR ) |
| 67 | 49 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` ( D x. A ) ) e. RR ) |
| 68 | 66 67 | readdcld | |- ( ( ph /\ x e. X ) -> ( ( abs ` ( C x. B ) ) + ( abs ` ( D x. A ) ) ) e. RR ) |
| 69 | 48 49 | abs2dif2d | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( C x. B ) - ( D x. A ) ) ) <_ ( ( abs ` ( C x. B ) ) + ( abs ` ( D x. A ) ) ) ) |
| 70 | 19 | adantr | |- ( ( ph /\ x e. X ) -> ( U x. R ) e. RR ) |
| 71 | 20 | adantr | |- ( ( ph /\ x e. X ) -> ( T x. Q ) e. RR ) |
| 72 | 4 5 | absmuld | |- ( ( ph /\ x e. X ) -> ( abs ` ( C x. B ) ) = ( ( abs ` C ) x. ( abs ` B ) ) ) |
| 73 | 4 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` C ) e. RR ) |
| 74 | 6 | adantr | |- ( ( ph /\ x e. X ) -> U e. RR ) |
| 75 | 7 | adantr | |- ( ( ph /\ x e. X ) -> R e. RR ) |
| 76 | 4 | absge0d | |- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` C ) ) |
| 77 | 5 | absge0d | |- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` B ) ) |
| 78 | 73 74 35 75 76 77 10 11 | lemul12ad | |- ( ( ph /\ x e. X ) -> ( ( abs ` C ) x. ( abs ` B ) ) <_ ( U x. R ) ) |
| 79 | 72 78 | eqbrtrd | |- ( ( ph /\ x e. X ) -> ( abs ` ( C x. B ) ) <_ ( U x. R ) ) |
| 80 | 15 2 | absmuld | |- ( ( ph /\ x e. X ) -> ( abs ` ( D x. A ) ) = ( ( abs ` D ) x. ( abs ` A ) ) ) |
| 81 | 15 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` D ) e. RR ) |
| 82 | 8 | adantr | |- ( ( ph /\ x e. X ) -> T e. RR ) |
| 83 | 2 | abscld | |- ( ( ph /\ x e. X ) -> ( abs ` A ) e. RR ) |
| 84 | 9 | adantr | |- ( ( ph /\ x e. X ) -> Q e. RR ) |
| 85 | 15 | absge0d | |- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` D ) ) |
| 86 | 2 | absge0d | |- ( ( ph /\ x e. X ) -> 0 <_ ( abs ` A ) ) |
| 87 | 81 82 83 84 85 86 12 13 | lemul12ad | |- ( ( ph /\ x e. X ) -> ( ( abs ` D ) x. ( abs ` A ) ) <_ ( T x. Q ) ) |
| 88 | 80 87 | eqbrtrd | |- ( ( ph /\ x e. X ) -> ( abs ` ( D x. A ) ) <_ ( T x. Q ) ) |
| 89 | 66 67 70 71 79 88 | le2addd | |- ( ( ph /\ x e. X ) -> ( ( abs ` ( C x. B ) ) + ( abs ` ( D x. A ) ) ) <_ ( ( U x. R ) + ( T x. Q ) ) ) |
| 90 | 59 68 60 69 89 | letrd | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( C x. B ) - ( D x. A ) ) ) <_ ( ( U x. R ) + ( T x. Q ) ) ) |
| 91 | 2nn0 | |- 2 e. NN0 |
|
| 92 | 91 | a1i | |- ( ( ph /\ x e. X ) -> 2 e. NN0 ) |
| 93 | 33 34 36 | ltled | |- ( ( ph /\ x e. X ) -> 0 <_ E ) |
| 94 | leexp1a | |- ( ( ( E e. RR /\ ( abs ` B ) e. RR /\ 2 e. NN0 ) /\ ( 0 <_ E /\ E <_ ( abs ` B ) ) ) -> ( E ^ 2 ) <_ ( ( abs ` B ) ^ 2 ) ) |
|
| 95 | 34 35 92 93 37 94 | syl32anc | |- ( ( ph /\ x e. X ) -> ( E ^ 2 ) <_ ( ( abs ` B ) ^ 2 ) ) |
| 96 | 5 92 | absexpd | |- ( ( ph /\ x e. X ) -> ( abs ` ( B ^ 2 ) ) = ( ( abs ` B ) ^ 2 ) ) |
| 97 | 95 96 | breqtrrd | |- ( ( ph /\ x e. X ) -> ( E ^ 2 ) <_ ( abs ` ( B ^ 2 ) ) ) |
| 98 | 59 60 63 64 65 90 97 | lediv12ad | |- ( ( ph /\ x e. X ) -> ( ( abs ` ( ( C x. B ) - ( D x. A ) ) ) / ( abs ` ( B ^ 2 ) ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 99 | 58 98 | eqbrtrd | |- ( ( ph /\ x e. X ) -> ( abs ` ( ( ( C x. B ) - ( D x. A ) ) / ( B ^ 2 ) ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 100 | 57 99 | eqbrtrd | |- ( ( ph /\ x e. X ) -> ( abs ` ( F ` x ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 101 | 100 | ralrimiva | |- ( ph -> A. x e. X ( abs ` ( F ` x ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) |
| 102 | brralrspcev | |- ( ( ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) e. RR /\ A. x e. X ( abs ` ( F ` x ) ) <_ ( ( ( U x. R ) + ( T x. Q ) ) / ( E ^ 2 ) ) ) -> E. b e. RR A. x e. X ( abs ` ( F ` x ) ) <_ b ) |
|
| 103 | 30 101 102 | syl2anc | |- ( ph -> E. b e. RR A. x e. X ( abs ` ( F ` x ) ) <_ b ) |