This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for the derivative of a product to be continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvsubcncf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvsubcncf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | ||
| dvsubcncf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | ||
| dvsubcncf.fdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| dvsubcncf.gdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) | ||
| Assertion | dvsubcncf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f − 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvsubcncf.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvsubcncf.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 3 | dvsubcncf.g | ⊢ ( 𝜑 → 𝐺 : 𝑋 ⟶ ℂ ) | |
| 4 | dvsubcncf.fdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 5 | dvsubcncf.gdv | ⊢ ( 𝜑 → ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) ) | |
| 6 | cncff | ⊢ ( ( 𝑆 D 𝐹 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ ) | |
| 7 | fdm | ⊢ ( ( 𝑆 D 𝐹 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐹 ) = 𝑋 ) | |
| 8 | 4 6 7 | 3syl | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐹 ) = 𝑋 ) |
| 9 | cncff | ⊢ ( ( 𝑆 D 𝐺 ) ∈ ( 𝑋 –cn→ ℂ ) → ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ ) | |
| 10 | fdm | ⊢ ( ( 𝑆 D 𝐺 ) : 𝑋 ⟶ ℂ → dom ( 𝑆 D 𝐺 ) = 𝑋 ) | |
| 11 | 5 9 10 | 3syl | ⊢ ( 𝜑 → dom ( 𝑆 D 𝐺 ) = 𝑋 ) |
| 12 | 1 2 3 8 11 | dvsubf | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f − 𝐺 ) ) = ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) ) |
| 13 | 4 5 | subcncff | ⊢ ( 𝜑 → ( ( 𝑆 D 𝐹 ) ∘f − ( 𝑆 D 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |
| 14 | 12 13 | eqeltrd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝐹 ∘f − 𝐺 ) ) ∈ ( 𝑋 –cn→ ℂ ) ) |