This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, quotient rule. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptdiv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| dvmptdiv.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | ||
| dvmptdiv.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | ||
| dvmptdiv.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | ||
| dvmptdiv.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) | ||
| dvmptdiv.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) | ||
| dvmptdiv.dc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | ||
| Assertion | dvmptdiv | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐵 · 𝐶 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐶 ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptdiv.s | ⊢ ( 𝜑 → 𝑆 ∈ { ℝ , ℂ } ) | |
| 2 | dvmptdiv.a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ℂ ) | |
| 3 | dvmptdiv.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ 𝑉 ) | |
| 4 | dvmptdiv.da | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ) | |
| 5 | dvmptdiv.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ( ℂ ∖ { 0 } ) ) | |
| 6 | dvmptdiv.d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ℂ ) | |
| 7 | dvmptdiv.dc | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ 𝐷 ) ) | |
| 8 | 5 | eldifad | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ∈ ℂ ) |
| 9 | eldifsn | ⊢ ( 𝐶 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) | |
| 10 | 5 9 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
| 11 | 10 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐶 ≠ 0 ) |
| 12 | 2 8 11 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 / 𝐶 ) = ( 𝐴 · ( 1 / 𝐶 ) ) ) |
| 13 | 12 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 1 / 𝐶 ) ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 1 / 𝐶 ) ) ) ) ) |
| 15 | 8 11 | reccld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 1 / 𝐶 ) ∈ ℂ ) |
| 16 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 1 ∈ ℂ ) | |
| 17 | 16 6 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 1 · 𝐷 ) ∈ ℂ ) |
| 18 | 8 | sqcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 ↑ 2 ) ∈ ℂ ) |
| 19 | 11 | neneqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝐶 = 0 ) |
| 20 | sqeq0 | ⊢ ( 𝐶 ∈ ℂ → ( ( 𝐶 ↑ 2 ) = 0 ↔ 𝐶 = 0 ) ) | |
| 21 | 8 20 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 ↑ 2 ) = 0 ↔ 𝐶 = 0 ) ) |
| 22 | 19 21 | mtbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ ( 𝐶 ↑ 2 ) = 0 ) |
| 23 | 22 | neqned | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 ↑ 2 ) ≠ 0 ) |
| 24 | 17 18 23 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 25 | 24 | negcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 26 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 27 | 1 26 5 6 7 | dvrecg | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 1 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 28 | 1 2 3 4 15 25 27 | dvmptmul | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · ( 1 / 𝐶 ) ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · ( 1 / 𝐶 ) ) + ( - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) ) ) |
| 29 | 1 2 3 4 | dvmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 30 | 29 8 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 31 | 30 18 23 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 32 | 6 2 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 · 𝐴 ) ∈ ℂ ) |
| 33 | 32 18 23 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 34 | 31 33 | negsubd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) + - ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) = ( ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) − ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 35 | 29 16 8 11 | div12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 · ( 1 / 𝐶 ) ) = ( 1 · ( 𝐵 / 𝐶 ) ) ) |
| 36 | 29 8 11 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 37 | 36 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 1 · ( 𝐵 / 𝐶 ) ) = ( 𝐵 / 𝐶 ) ) |
| 38 | 8 | sqvald | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 ↑ 2 ) = ( 𝐶 · 𝐶 ) ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) = ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐶 ) ) ) |
| 40 | 29 8 8 11 11 | divcan5rd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 · 𝐶 ) / ( 𝐶 · 𝐶 ) ) = ( 𝐵 / 𝐶 ) ) |
| 41 | 39 40 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 / 𝐶 ) = ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) ) |
| 42 | 35 37 41 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐵 · ( 1 / 𝐶 ) ) = ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) ) |
| 43 | 6 | mullidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 1 · 𝐷 ) = 𝐷 ) |
| 44 | 43 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) = ( 𝐷 / ( 𝐶 ↑ 2 ) ) ) |
| 45 | 44 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) = - ( 𝐷 / ( 𝐶 ↑ 2 ) ) ) |
| 46 | 45 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) · 𝐴 ) = ( - ( 𝐷 / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) |
| 47 | 6 18 23 | divcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐷 / ( 𝐶 ↑ 2 ) ) ∈ ℂ ) |
| 48 | 47 2 | mulneg1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( 𝐷 / ( 𝐶 ↑ 2 ) ) · 𝐴 ) = - ( ( 𝐷 / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) |
| 49 | 6 2 18 23 | div23d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) = ( ( 𝐷 / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) |
| 50 | 49 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐷 / ( 𝐶 ↑ 2 ) ) · 𝐴 ) = ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) |
| 51 | 50 | negeqd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → - ( ( 𝐷 / ( 𝐶 ↑ 2 ) ) · 𝐴 ) = - ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) |
| 52 | 46 48 51 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) · 𝐴 ) = - ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) |
| 53 | 42 52 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 · ( 1 / 𝐶 ) ) + ( - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) = ( ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) + - ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 54 | 30 32 18 23 | divsubdird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐵 · 𝐶 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐶 ↑ 2 ) ) = ( ( ( 𝐵 · 𝐶 ) / ( 𝐶 ↑ 2 ) ) − ( ( 𝐷 · 𝐴 ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 55 | 34 53 54 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐵 · ( 1 / 𝐶 ) ) + ( - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) = ( ( ( 𝐵 · 𝐶 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐶 ↑ 2 ) ) ) |
| 56 | 55 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ( 𝐵 · ( 1 / 𝐶 ) ) + ( - ( ( 1 · 𝐷 ) / ( 𝐶 ↑ 2 ) ) · 𝐴 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐵 · 𝐶 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐶 ↑ 2 ) ) ) ) |
| 57 | 14 28 56 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑆 D ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 / 𝐶 ) ) ) = ( 𝑥 ∈ 𝑋 ↦ ( ( ( 𝐵 · 𝐶 ) − ( 𝐷 · 𝐴 ) ) / ( 𝐶 ↑ 2 ) ) ) ) |