This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011) (Proof shortened by SN, 25-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drngmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| drngmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| drngmcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | drngmcl | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngmcl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | drngmcl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | drngmcl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | drngring | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) | |
| 5 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → 𝑋 ∈ 𝐵 ) | |
| 6 | eldifi | ⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 8 | 4 5 6 7 | syl3an | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ 𝐵 ) |
| 9 | drngdomn | ⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Domn ) | |
| 10 | eldifsn | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) | |
| 11 | 10 | biimpi | ⊢ ( 𝑋 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ) |
| 12 | eldifsn | ⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ↔ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) | |
| 13 | 12 | biimpi | ⊢ ( 𝑌 ∈ ( 𝐵 ∖ { 0 } ) → ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) |
| 14 | 1 2 3 | domnmuln0 | ⊢ ( ( 𝑅 ∈ Domn ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |
| 15 | 9 11 13 14 | syl3an | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ≠ 0 ) |
| 16 | 8 15 | eldifsnd | ⊢ ( ( 𝑅 ∈ DivRing ∧ 𝑋 ∈ ( 𝐵 ∖ { 0 } ) ∧ 𝑌 ∈ ( 𝐵 ∖ { 0 } ) ) → ( 𝑋 · 𝑌 ) ∈ ( 𝐵 ∖ { 0 } ) ) |