This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inisegn0 | ⊢ ( 𝐴 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ ran 𝐹 → 𝐴 ∈ V ) | |
| 2 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 3 | 2 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 4 | 3 | imaeq2d | ⊢ ( ¬ 𝐴 ∈ V → ( ◡ 𝐹 “ { 𝐴 } ) = ( ◡ 𝐹 “ ∅ ) ) |
| 5 | ima0 | ⊢ ( ◡ 𝐹 “ ∅ ) = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ( ◡ 𝐹 “ { 𝐴 } ) = ∅ ) |
| 7 | 6 | necon1ai | ⊢ ( ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ → 𝐴 ∈ V ) |
| 8 | eleq1 | ⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∈ ran 𝐹 ↔ 𝐴 ∈ ran 𝐹 ) ) | |
| 9 | sneq | ⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) | |
| 10 | 9 | imaeq2d | ⊢ ( 𝑎 = 𝐴 → ( ◡ 𝐹 “ { 𝑎 } ) = ( ◡ 𝐹 “ { 𝐴 } ) ) |
| 11 | 10 | neeq1d | ⊢ ( 𝑎 = 𝐴 → ( ( ◡ 𝐹 “ { 𝑎 } ) ≠ ∅ ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) ) |
| 12 | abn0 | ⊢ ( { 𝑏 ∣ 𝑏 𝐹 𝑎 } ≠ ∅ ↔ ∃ 𝑏 𝑏 𝐹 𝑎 ) | |
| 13 | iniseg | ⊢ ( 𝑎 ∈ V → ( ◡ 𝐹 “ { 𝑎 } ) = { 𝑏 ∣ 𝑏 𝐹 𝑎 } ) | |
| 14 | 13 | elv | ⊢ ( ◡ 𝐹 “ { 𝑎 } ) = { 𝑏 ∣ 𝑏 𝐹 𝑎 } |
| 15 | 14 | neeq1i | ⊢ ( ( ◡ 𝐹 “ { 𝑎 } ) ≠ ∅ ↔ { 𝑏 ∣ 𝑏 𝐹 𝑎 } ≠ ∅ ) |
| 16 | vex | ⊢ 𝑎 ∈ V | |
| 17 | 16 | elrn | ⊢ ( 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑏 𝑏 𝐹 𝑎 ) |
| 18 | 12 15 17 | 3bitr4ri | ⊢ ( 𝑎 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝑎 } ) ≠ ∅ ) |
| 19 | 8 11 18 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) ) |
| 20 | 1 7 19 | pm5.21nii | ⊢ ( 𝐴 ∈ ran 𝐹 ↔ ( ◡ 𝐹 “ { 𝐴 } ) ≠ ∅ ) |