This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define an injection from a set into the ordinals using a choice function. (Contributed by Stefan O'Rear, 18-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| dnnumch.a | |- ( ph -> A e. V ) |
||
| dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
||
| Assertion | dnnumch3 | |- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dnnumch.f | |- F = recs ( ( z e. _V |-> ( G ` ( A \ ran z ) ) ) ) |
|
| 2 | dnnumch.a | |- ( ph -> A e. V ) |
|
| 3 | dnnumch.g | |- ( ph -> A. y e. ~P A ( y =/= (/) -> ( G ` y ) e. y ) ) |
|
| 4 | cnvimass | |- ( `' F " { x } ) C_ dom F |
|
| 5 | 1 | tfr1 | |- F Fn On |
| 6 | 5 | fndmi | |- dom F = On |
| 7 | 4 6 | sseqtri | |- ( `' F " { x } ) C_ On |
| 8 | 1 2 3 | dnnumch2 | |- ( ph -> A C_ ran F ) |
| 9 | 8 | sselda | |- ( ( ph /\ x e. A ) -> x e. ran F ) |
| 10 | inisegn0 | |- ( x e. ran F <-> ( `' F " { x } ) =/= (/) ) |
|
| 11 | 9 10 | sylib | |- ( ( ph /\ x e. A ) -> ( `' F " { x } ) =/= (/) ) |
| 12 | oninton | |- ( ( ( `' F " { x } ) C_ On /\ ( `' F " { x } ) =/= (/) ) -> |^| ( `' F " { x } ) e. On ) |
|
| 13 | 7 11 12 | sylancr | |- ( ( ph /\ x e. A ) -> |^| ( `' F " { x } ) e. On ) |
| 14 | 13 | fmpttd | |- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On ) |
| 15 | 1 2 3 | dnnumch3lem | |- ( ( ph /\ v e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
| 16 | 15 | adantrr | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = |^| ( `' F " { v } ) ) |
| 17 | 1 2 3 | dnnumch3lem | |- ( ( ph /\ w e. A ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| 18 | 17 | adantrl | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) = |^| ( `' F " { w } ) ) |
| 19 | 16 18 | eqeq12d | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) <-> |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) ) |
| 20 | fveq2 | |- ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) |
|
| 21 | 20 | adantl | |- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = ( F ` |^| ( `' F " { w } ) ) ) |
| 22 | cnvimass | |- ( `' F " { v } ) C_ dom F |
|
| 23 | 22 6 | sseqtri | |- ( `' F " { v } ) C_ On |
| 24 | 8 | sselda | |- ( ( ph /\ v e. A ) -> v e. ran F ) |
| 25 | inisegn0 | |- ( v e. ran F <-> ( `' F " { v } ) =/= (/) ) |
|
| 26 | 24 25 | sylib | |- ( ( ph /\ v e. A ) -> ( `' F " { v } ) =/= (/) ) |
| 27 | onint | |- ( ( ( `' F " { v } ) C_ On /\ ( `' F " { v } ) =/= (/) ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) |
|
| 28 | 23 26 27 | sylancr | |- ( ( ph /\ v e. A ) -> |^| ( `' F " { v } ) e. ( `' F " { v } ) ) |
| 29 | fniniseg | |- ( F Fn On -> ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) ) |
|
| 30 | 5 29 | ax-mp | |- ( |^| ( `' F " { v } ) e. ( `' F " { v } ) <-> ( |^| ( `' F " { v } ) e. On /\ ( F ` |^| ( `' F " { v } ) ) = v ) ) |
| 31 | 30 | simprbi | |- ( |^| ( `' F " { v } ) e. ( `' F " { v } ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 32 | 28 31 | syl | |- ( ( ph /\ v e. A ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 33 | 32 | adantrr | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { v } ) ) = v ) |
| 35 | cnvimass | |- ( `' F " { w } ) C_ dom F |
|
| 36 | 35 6 | sseqtri | |- ( `' F " { w } ) C_ On |
| 37 | 8 | sselda | |- ( ( ph /\ w e. A ) -> w e. ran F ) |
| 38 | inisegn0 | |- ( w e. ran F <-> ( `' F " { w } ) =/= (/) ) |
|
| 39 | 37 38 | sylib | |- ( ( ph /\ w e. A ) -> ( `' F " { w } ) =/= (/) ) |
| 40 | onint | |- ( ( ( `' F " { w } ) C_ On /\ ( `' F " { w } ) =/= (/) ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) |
|
| 41 | 36 39 40 | sylancr | |- ( ( ph /\ w e. A ) -> |^| ( `' F " { w } ) e. ( `' F " { w } ) ) |
| 42 | fniniseg | |- ( F Fn On -> ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) ) |
|
| 43 | 5 42 | ax-mp | |- ( |^| ( `' F " { w } ) e. ( `' F " { w } ) <-> ( |^| ( `' F " { w } ) e. On /\ ( F ` |^| ( `' F " { w } ) ) = w ) ) |
| 44 | 43 | simprbi | |- ( |^| ( `' F " { w } ) e. ( `' F " { w } ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 45 | 41 44 | syl | |- ( ( ph /\ w e. A ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 46 | 45 | adantrl | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 47 | 46 | adantr | |- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> ( F ` |^| ( `' F " { w } ) ) = w ) |
| 48 | 21 34 47 | 3eqtr3d | |- ( ( ( ph /\ ( v e. A /\ w e. A ) ) /\ |^| ( `' F " { v } ) = |^| ( `' F " { w } ) ) -> v = w ) |
| 49 | 48 | ex | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( |^| ( `' F " { v } ) = |^| ( `' F " { w } ) -> v = w ) ) |
| 50 | 19 49 | sylbid | |- ( ( ph /\ ( v e. A /\ w e. A ) ) -> ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) |
| 51 | 50 | ralrimivva | |- ( ph -> A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) |
| 52 | dff13 | |- ( ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On <-> ( ( x e. A |-> |^| ( `' F " { x } ) ) : A --> On /\ A. v e. A A. w e. A ( ( ( x e. A |-> |^| ( `' F " { x } ) ) ` v ) = ( ( x e. A |-> |^| ( `' F " { x } ) ) ` w ) -> v = w ) ) ) |
|
| 53 | 14 51 52 | sylanbrc | |- ( ph -> ( x e. A |-> |^| ( `' F " { x } ) ) : A -1-1-> On ) |