This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an ordered pair class abstraction with three nested restricted existential quantifiers with differences. (Contributed by AV, 25-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmopab3rexdif | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 | ⊢ ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 2 | rexcom4 | ⊢ ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) | |
| 3 | 1 2 | orbi12i | ⊢ ( ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 4 | 19.43 | ⊢ ( ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑦 ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑦 ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 6 | 5 | rexbii | ⊢ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 7 | rexcom4 | ⊢ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 9 | rexcom4 | ⊢ ( ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 10 | 9 | rexbii | ⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑦 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 11 | rexcom4 | ⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑦 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) |
| 13 | 8 12 | orbi12i | ⊢ ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 14 | 19.43 | ⊢ ( ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑦 ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑦 ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) | |
| 15 | 13 14 | bitr4i | ⊢ ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 16 | difssd | ⊢ ( 𝑆 ⊆ 𝑈 → ( 𝑈 ∖ 𝑆 ) ⊆ 𝑈 ) | |
| 17 | ssralv | ⊢ ( ( 𝑈 ∖ 𝑆 ) ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) ) | |
| 18 | 16 17 | syl | ⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) ) |
| 19 | 18 | impcom | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) |
| 20 | simpl | ⊢ ( ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑧 = 𝐴 ) | |
| 21 | 20 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑧 = 𝐴 ) |
| 22 | elisset | ⊢ ( 𝐵 ∈ 𝑋 → ∃ 𝑦 𝑦 = 𝐵 ) | |
| 23 | ibar | ⊢ ( 𝑧 = 𝐴 → ( 𝑦 = 𝐵 ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) | |
| 24 | 23 | bicomd | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ 𝑦 = 𝐵 ) ) |
| 25 | 24 | exbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑦 𝑦 = 𝐵 ) ) |
| 26 | 22 25 | syl5ibrcom | ⊢ ( 𝐵 ∈ 𝑋 → ( 𝑧 = 𝐴 → ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 27 | 21 26 | impbid2 | ⊢ ( 𝐵 ∈ 𝑋 → ( ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ 𝑧 = 𝐴 ) ) |
| 28 | 27 | ralrexbid | ⊢ ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 → ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ) ) |
| 29 | 28 | adantr | ⊢ ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ) ) |
| 30 | simpl | ⊢ ( ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) → 𝑧 = 𝐶 ) | |
| 31 | 30 | exlimiv | ⊢ ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) → 𝑧 = 𝐶 ) |
| 32 | elisset | ⊢ ( 𝐷 ∈ 𝑊 → ∃ 𝑦 𝑦 = 𝐷 ) | |
| 33 | ibar | ⊢ ( 𝑧 = 𝐶 → ( 𝑦 = 𝐷 ↔ ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) | |
| 34 | 33 | bicomd | ⊢ ( 𝑧 = 𝐶 → ( ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ 𝑦 = 𝐷 ) ) |
| 35 | 34 | exbidv | ⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑦 𝑦 = 𝐷 ) ) |
| 36 | 32 35 | syl5ibrcom | ⊢ ( 𝐷 ∈ 𝑊 → ( 𝑧 = 𝐶 → ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 37 | 31 36 | impbid2 | ⊢ ( 𝐷 ∈ 𝑊 → ( ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ 𝑧 = 𝐶 ) ) |
| 38 | 37 | ralrexbid | ⊢ ( ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 39 | 38 | adantl | ⊢ ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 40 | 29 39 | orbi12d | ⊢ ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 41 | 40 | ralrexbid | ⊢ ( ∀ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 42 | 19 41 | syl | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 43 | ssralv | ⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑆 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ) ) | |
| 44 | ssralv | ⊢ ( ( 𝑈 ∖ 𝑆 ) ⊆ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 → ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) | |
| 45 | 16 44 | syl | ⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 → ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 46 | 45 | adantrd | ⊢ ( 𝑆 ⊆ 𝑈 → ( ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 47 | 46 | ralimdv | ⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑆 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 48 | 43 47 | syld | ⊢ ( 𝑆 ⊆ 𝑈 → ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) ) |
| 49 | 48 | impcom | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 ) |
| 50 | 27 | ralrexbid | ⊢ ( ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 → ( ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 51 | 50 | ralrexbid | ⊢ ( ∀ 𝑢 ∈ 𝑆 ∀ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝐵 ∈ 𝑋 → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 52 | 49 51 | syl | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 53 | 42 52 | orbi12d | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ∃ 𝑦 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ∃ 𝑦 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) ) |
| 54 | 15 53 | bitr3id | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) ) |
| 55 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐴 ↔ 𝑧 = 𝐴 ) ) | |
| 56 | 55 | anbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 57 | 56 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 58 | eqeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝐶 ↔ 𝑧 = 𝐶 ) ) | |
| 59 | 58 | anbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 60 | 59 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ↔ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) |
| 61 | 57 60 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 62 | 61 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 63 | 56 | 2rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 64 | 62 63 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ) |
| 65 | 64 | dmopabelb | ⊢ ( 𝑧 ∈ V → ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } ↔ ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) ) |
| 66 | 65 | elv | ⊢ ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } ↔ ∃ 𝑦 ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑧 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑧 = 𝐴 ∧ 𝑦 = 𝐵 ) ) ) |
| 67 | vex | ⊢ 𝑧 ∈ V | |
| 68 | 55 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ↔ ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ) ) |
| 69 | 58 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ↔ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) |
| 70 | 68 69 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ↔ ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 71 | 70 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ↔ ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ) ) |
| 72 | 55 | 2rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ↔ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 73 | 71 72 | orbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) ) |
| 74 | 67 73 | elab | ⊢ ( 𝑧 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ↔ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑧 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑧 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑧 = 𝐴 ) ) |
| 75 | 54 66 74 | 3bitr4g | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → ( 𝑧 ∈ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } ↔ 𝑧 ∈ { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ) ) |
| 76 | 75 | eqrdv | ⊢ ( ( ∀ 𝑢 ∈ 𝑈 ( ∀ 𝑣 ∈ 𝑈 𝐵 ∈ 𝑋 ∧ ∀ 𝑖 ∈ 𝐼 𝐷 ∈ 𝑊 ) ∧ 𝑆 ⊆ 𝑈 ) → dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∨ ∃ 𝑖 ∈ 𝐼 ( 𝑥 = 𝐶 ∧ 𝑦 = 𝐷 ) ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ) } = { 𝑥 ∣ ( ∃ 𝑢 ∈ ( 𝑈 ∖ 𝑆 ) ( ∃ 𝑣 ∈ 𝑈 𝑥 = 𝐴 ∨ ∃ 𝑖 ∈ 𝐼 𝑥 = 𝐶 ) ∨ ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ ( 𝑈 ∖ 𝑆 ) 𝑥 = 𝐴 ) } ) |