This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djulf1o | ⊢ inl : V –1-1-onto→ ( { ∅ } × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inl | ⊢ inl = ( 𝑥 ∈ V ↦ 〈 ∅ , 𝑥 〉 ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 2 | snid | ⊢ ∅ ∈ { ∅ } |
| 4 | opelxpi | ⊢ ( ( ∅ ∈ { ∅ } ∧ 𝑥 ∈ V ) → 〈 ∅ , 𝑥 〉 ∈ ( { ∅ } × V ) ) | |
| 5 | 3 4 | mpan | ⊢ ( 𝑥 ∈ V → 〈 ∅ , 𝑥 〉 ∈ ( { ∅ } × V ) ) |
| 6 | 5 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ V ) → 〈 ∅ , 𝑥 〉 ∈ ( { ∅ } × V ) ) |
| 7 | fvexd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( { ∅ } × V ) ) → ( 2nd ‘ 𝑦 ) ∈ V ) | |
| 8 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 9 | xp1st | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 1st ‘ 𝑦 ) ∈ { ∅ } ) | |
| 10 | elsni | ⊢ ( ( 1st ‘ 𝑦 ) ∈ { ∅ } → ( 1st ‘ 𝑦 ) = ∅ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 1st ‘ 𝑦 ) = ∅ ) |
| 12 | 11 | opeq1d | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ) |
| 13 | 8 12 | eqtrd | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → 𝑦 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ) |
| 14 | 13 | eqeq2d | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 〈 ∅ , 𝑥 〉 = 𝑦 ↔ 〈 ∅ , 𝑥 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ) ) |
| 15 | eqcom | ⊢ ( 〈 ∅ , 𝑥 〉 = 𝑦 ↔ 𝑦 = 〈 ∅ , 𝑥 〉 ) | |
| 16 | eqid | ⊢ ∅ = ∅ | |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 2 17 | opth | ⊢ ( 〈 ∅ , 𝑥 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ↔ ( ∅ = ∅ ∧ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
| 19 | 16 18 | mpbiran | ⊢ ( 〈 ∅ , 𝑥 〉 = 〈 ∅ , ( 2nd ‘ 𝑦 ) 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) |
| 20 | 14 15 19 | 3bitr3g | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 𝑦 = 〈 ∅ , 𝑥 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
| 21 | 20 | bicomd | ⊢ ( 𝑦 ∈ ( { ∅ } × V ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 ∅ , 𝑥 〉 ) ) |
| 22 | 21 | ad2antll | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ ( { ∅ } × V ) ) ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 ∅ , 𝑥 〉 ) ) |
| 23 | 1 6 7 22 | f1o2d | ⊢ ( ⊤ → inl : V –1-1-onto→ ( { ∅ } × V ) ) |
| 24 | 23 | mptru | ⊢ inl : V –1-1-onto→ ( { ∅ } × V ) |