This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djurf1o | ⊢ inr : V –1-1-onto→ ( { 1o } × V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-inr | ⊢ inr = ( 𝑥 ∈ V ↦ 〈 1o , 𝑥 〉 ) | |
| 2 | 1onn | ⊢ 1o ∈ ω | |
| 3 | snidg | ⊢ ( 1o ∈ ω → 1o ∈ { 1o } ) | |
| 4 | 2 3 | ax-mp | ⊢ 1o ∈ { 1o } |
| 5 | opelxpi | ⊢ ( ( 1o ∈ { 1o } ∧ 𝑥 ∈ V ) → 〈 1o , 𝑥 〉 ∈ ( { 1o } × V ) ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝑥 ∈ V → 〈 1o , 𝑥 〉 ∈ ( { 1o } × V ) ) |
| 7 | 6 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ V ) → 〈 1o , 𝑥 〉 ∈ ( { 1o } × V ) ) |
| 8 | fvexd | ⊢ ( ( ⊤ ∧ 𝑦 ∈ ( { 1o } × V ) ) → ( 2nd ‘ 𝑦 ) ∈ V ) | |
| 9 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 10 | xp1st | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 1st ‘ 𝑦 ) ∈ { 1o } ) | |
| 11 | elsni | ⊢ ( ( 1st ‘ 𝑦 ) ∈ { 1o } → ( 1st ‘ 𝑦 ) = 1o ) | |
| 12 | 10 11 | syl | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 1st ‘ 𝑦 ) = 1o ) |
| 13 | 12 | opeq1d | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ) |
| 14 | 9 13 | eqtrd | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → 𝑦 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 〈 1o , 𝑥 〉 = 𝑦 ↔ 〈 1o , 𝑥 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ) ) |
| 16 | eqcom | ⊢ ( 〈 1o , 𝑥 〉 = 𝑦 ↔ 𝑦 = 〈 1o , 𝑥 〉 ) | |
| 17 | eqid | ⊢ 1o = 1o | |
| 18 | 1oex | ⊢ 1o ∈ V | |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | 18 19 | opth | ⊢ ( 〈 1o , 𝑥 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ↔ ( 1o = 1o ∧ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
| 21 | 17 20 | mpbiran | ⊢ ( 〈 1o , 𝑥 〉 = 〈 1o , ( 2nd ‘ 𝑦 ) 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) |
| 22 | 15 16 21 | 3bitr3g | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 𝑦 = 〈 1o , 𝑥 〉 ↔ 𝑥 = ( 2nd ‘ 𝑦 ) ) ) |
| 23 | 22 | bicomd | ⊢ ( 𝑦 ∈ ( { 1o } × V ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 1o , 𝑥 〉 ) ) |
| 24 | 23 | ad2antll | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ ( { 1o } × V ) ) ) → ( 𝑥 = ( 2nd ‘ 𝑦 ) ↔ 𝑦 = 〈 1o , 𝑥 〉 ) ) |
| 25 | 1 7 8 24 | f1o2d | ⊢ ( ⊤ → inr : V –1-1-onto→ ( { 1o } × V ) ) |
| 26 | 25 | mptru | ⊢ inr : V –1-1-onto→ ( { 1o } × V ) |