This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Either A / ( A gcd B ) is odd or B / ( A gcd B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdodd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n2dvds1 | ⊢ ¬ 2 ∥ 1 | |
| 2 | 2z | ⊢ 2 ∈ ℤ | |
| 3 | nnz | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) | |
| 4 | nnz | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) | |
| 5 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 6 | 3 4 5 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 8 | gcdnncl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 9 | 8 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 10 | 8 | nnne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 11 | 3 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 12 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 13 | 9 10 11 12 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 14 | 7 13 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 15 | 6 | simprd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 16 | 4 | adantl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 17 | dvdsval2 | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) | |
| 18 | 9 10 16 17 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
| 19 | 15 18 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
| 20 | dvdsgcdb | ⊢ ( ( 2 ∈ ℤ ∧ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) → ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) | |
| 21 | 2 14 19 20 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
| 22 | gcddiv | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 23 | 11 16 8 6 22 | syl31anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 24 | 8 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 25 | 24 10 | dividd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
| 26 | 23 25 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 27 | 26 | breq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 2 ∥ 1 ) ) |
| 28 | 27 | biimpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) → 2 ∥ 1 ) ) |
| 29 | 21 28 | sylbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) → 2 ∥ 1 ) ) |
| 30 | 29 | expdimp | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) → 2 ∥ 1 ) ) |
| 31 | 1 30 | mtoi | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
| 32 | 31 | ex | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) → ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 33 | imor | ⊢ ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) → ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 34 | 32 33 | sylib | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |