This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Either A / ( A gcd B ) is odd or B / ( A gcd B ) is odd. (Contributed by Scott Fenton, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdodd | |- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n2dvds1 | |- -. 2 || 1 |
|
| 2 | 2z | |- 2 e. ZZ |
|
| 3 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 4 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 5 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
| 7 | 6 | simpld | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || A ) |
| 8 | gcdnncl | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. NN ) |
|
| 9 | 8 | nnzd | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. ZZ ) |
| 10 | 8 | nnne0d | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) =/= 0 ) |
| 11 | 3 | adantr | |- ( ( A e. NN /\ B e. NN ) -> A e. ZZ ) |
| 12 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
|
| 13 | 9 10 11 12 | syl3anc | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. ZZ ) ) |
| 14 | 7 13 | mpbid | |- ( ( A e. NN /\ B e. NN ) -> ( A / ( A gcd B ) ) e. ZZ ) |
| 15 | 6 | simprd | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) || B ) |
| 16 | 4 | adantl | |- ( ( A e. NN /\ B e. NN ) -> B e. ZZ ) |
| 17 | dvdsval2 | |- ( ( ( A gcd B ) e. ZZ /\ ( A gcd B ) =/= 0 /\ B e. ZZ ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
|
| 18 | 9 10 16 17 | syl3anc | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) || B <-> ( B / ( A gcd B ) ) e. ZZ ) ) |
| 19 | 15 18 | mpbid | |- ( ( A e. NN /\ B e. NN ) -> ( B / ( A gcd B ) ) e. ZZ ) |
| 20 | dvdsgcdb | |- ( ( 2 e. ZZ /\ ( A / ( A gcd B ) ) e. ZZ /\ ( B / ( A gcd B ) ) e. ZZ ) -> ( ( 2 || ( A / ( A gcd B ) ) /\ 2 || ( B / ( A gcd B ) ) ) <-> 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) ) |
|
| 21 | 2 14 19 20 | mp3an2i | |- ( ( A e. NN /\ B e. NN ) -> ( ( 2 || ( A / ( A gcd B ) ) /\ 2 || ( B / ( A gcd B ) ) ) <-> 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) ) |
| 22 | gcddiv | |- ( ( ( A e. ZZ /\ B e. ZZ /\ ( A gcd B ) e. NN ) /\ ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
|
| 23 | 11 16 8 6 22 | syl31anc | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) ) |
| 24 | 8 | nncnd | |- ( ( A e. NN /\ B e. NN ) -> ( A gcd B ) e. CC ) |
| 25 | 24 10 | dividd | |- ( ( A e. NN /\ B e. NN ) -> ( ( A gcd B ) / ( A gcd B ) ) = 1 ) |
| 26 | 23 25 | eqtr3d | |- ( ( A e. NN /\ B e. NN ) -> ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) = 1 ) |
| 27 | 26 | breq2d | |- ( ( A e. NN /\ B e. NN ) -> ( 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) <-> 2 || 1 ) ) |
| 28 | 27 | biimpd | |- ( ( A e. NN /\ B e. NN ) -> ( 2 || ( ( A / ( A gcd B ) ) gcd ( B / ( A gcd B ) ) ) -> 2 || 1 ) ) |
| 29 | 21 28 | sylbid | |- ( ( A e. NN /\ B e. NN ) -> ( ( 2 || ( A / ( A gcd B ) ) /\ 2 || ( B / ( A gcd B ) ) ) -> 2 || 1 ) ) |
| 30 | 29 | expdimp | |- ( ( ( A e. NN /\ B e. NN ) /\ 2 || ( A / ( A gcd B ) ) ) -> ( 2 || ( B / ( A gcd B ) ) -> 2 || 1 ) ) |
| 31 | 1 30 | mtoi | |- ( ( ( A e. NN /\ B e. NN ) /\ 2 || ( A / ( A gcd B ) ) ) -> -. 2 || ( B / ( A gcd B ) ) ) |
| 32 | 31 | ex | |- ( ( A e. NN /\ B e. NN ) -> ( 2 || ( A / ( A gcd B ) ) -> -. 2 || ( B / ( A gcd B ) ) ) ) |
| 33 | imor | |- ( ( 2 || ( A / ( A gcd B ) ) -> -. 2 || ( B / ( A gcd B ) ) ) <-> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |
|
| 34 | 32 33 | sylib | |- ( ( A e. NN /\ B e. NN ) -> ( -. 2 || ( A / ( A gcd B ) ) \/ -. 2 || ( B / ( A gcd B ) ) ) ) |