This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divgcdnn | |- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 2 | 1 | anim1i | |- ( ( A e. NN /\ B e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
| 3 | gcddvds | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
|
| 4 | 3 | simpld | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) || A ) |
| 5 | 2 4 | syl | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || A ) |
| 6 | nnne0 | |- ( A e. NN -> A =/= 0 ) |
|
| 7 | 6 | neneqd | |- ( A e. NN -> -. A = 0 ) |
| 8 | 7 | adantr | |- ( ( A e. NN /\ B e. ZZ ) -> -. A = 0 ) |
| 9 | 8 | intnanrd | |- ( ( A e. NN /\ B e. ZZ ) -> -. ( A = 0 /\ B = 0 ) ) |
| 10 | gcdn0cl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. NN ) |
|
| 11 | 2 9 10 | syl2anc | |- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. NN ) |
| 12 | nndivdvds | |- ( ( A e. NN /\ ( A gcd B ) e. NN ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. NN ) ) |
|
| 13 | 11 12 | syldan | |- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> ( A / ( A gcd B ) ) e. NN ) ) |
| 14 | 5 13 | mpbid | |- ( ( A e. NN /\ B e. ZZ ) -> ( A / ( A gcd B ) ) e. NN ) |